Jameson said:Hi Veronica,
It would be a good idea to take some time to learn Latex. We have http://www.mathhelpboards.com/f26/ with some tips here to get you started.
This is what I think you wrote out.
$$y = \csc ^{-1} \left[ \sec(x) \right]$$
Find $y'$. Is that correct? :)
veronica1999 said:Yes!
I promise i will learn it soon.
veronica1999 said:I don't understand why my answer is wrong...
\text{Formula: }\:\text{If }y \:=\:\csc^{-1}u,\,\text{then: }\:y' \:=\:\frac{-u'}{u\sqrt{u^2-1}}\text{Differentiate: }\:y \:=\:\csc^{-1}(\sec x)
Thank you!Opalg said:This is a surprisingly tricky problem. The first thing to notice is that $$\frac d{dx}(\operatorname{arccsc} x) = \frac{-1}{|x|\sqrt{x^2-1}}$$. (See here for example, though there are several web sites that carelessly give that formula without the mod signs on the $x$ in the denominator.) Therefore $$\frac d{dx}\bigl(\operatorname{arccsc}(\sec x)\bigr) = \frac{-\sec x\tan x}{|\sec x|\sqrt{\sec^2 x-1}} = \frac{-\sec x\tan x}{|\sec x\tan x|}.$$ Next, $\sec x\tan x = \sin x\sec^2x$, and $\sec^2x$ is always positive. So we can cancel a factor $\sec^2x$ from the top and bottom of that last displayed fraction, to get $$\frac d{dx}\bigl(\operatorname{arccsc}(\sec x)\bigr) = \frac{-\sin x}{|\sin x|} = \begin{cases}-1 & \text{if }\sin x>0,\\ +1 & \text{if }\sin x<0.\end{cases}$$
Assume angle x is acute.Differentiate: .y \:=\:\csc^{-1}(\sec x)
*
* z*
c * *
* * a
* *
* x *
* * * * * * *
b
...Prove It said:[math]\displaystyle \begin{align*} y &= \csc^{-1} { \left[ \sec{(x)} \right] } \\ \csc{(y)} &= \sec{(x)} \\ \frac{1}{\sin{(y)}} &= \frac{1}{\cos{(x)}} \\ \cos{(x)} &= \sin{(y)} \\ \frac{d}{dx} \left[ \cos{(x)} \right] &= \frac{d}{dx} \left[ \sin{(y)} \right] \\ -\sin{(x)} &= \cos{(y)}\,\frac{dy}{dx} \\ -\frac{\sin{(x)}}{\cos{(y)}} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{ \sqrt{ 1 - \frac{1}{\csc^2{(y)}} } } &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{ \sqrt{ 1 - \frac{1}{ \left( \csc{ \left\{ \csc^{-1}{ \left[ \sec{(x)} \right] } \right\} } \right) ^2 } } } &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sqrt{ 1 - \frac{1}{\sec^2{(x)}} }} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sqrt{1 - \cos^2{(x)}}} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sin{(x)}} &= \frac{dy}{dx}\quad \color{red}{\text{The denominator here should be }|\sin x|} \\ \frac{dy}{dx} &= -1\quad \color{red}{\text{ if }\sin x>0, \text{ but +1 if }\sin x<0.}\end{align*}[/math]