Calculate Load carrying capacity of vertically mounted suction cup

AI Thread Summary
The discussion focuses on calculating the load-carrying capacity of a vertically mounted suction cup with a diameter of 90mm, mounted on glass, under specific pressure conditions. Two approaches to the calculation are presented: one based on force equilibrium and friction, yielding a maximum load of approximately 1.2 kg, and another considering the moment acting on the suction cup, suggesting a load of about 3.8 kg. Additional calculations indicate that the suction cup will slide down the glass at a load of 3.24 kg and will break off the surface at approximately 4.87 kg. The coefficient of friction between the suction cup and glass is assumed to be 0.2. The discussion concludes with a confirmation that the approaches used are valid for understanding suction cup design and load capacity.
Acenish
Messages
3
Reaction score
0
TL;DR Summary
Calculate Load carrying capacity of vertically mounted suction cup
I'm looking for means of calculating load carrying capacity of a vertically mounted suction cup.
Suction Cup effective diameter = 90mm
Mounted on a vertical glass surface
Pressure inside the suction cup = 0.75bar
Pressure difference = 0.25bar
Weight is suspended from a rod attached in the centre of the suction cup.
Rod length = 150mm

Need to calculate how much weight can be suspended before the suction cup pulls off the glass surface

Assume, coefficient of friction between suction cup and glass as 0.2
 
Engineering news on Phys.org
Welcome to PF.
Is this a homework problem?
Have you tried to solve the problem yourself?
 
Hi
No its not a homework problem, rather a curiosity in suction cup design and load capacity.
This arose while using suction cup phone mounts or clothes line as well as with respect to nerf arrows.

Below is a diagram of the suction cup with a suspended load.
1675559598579.png


Applying force equilibrium, we get
Fsuction = N (normal force)
Ffric = W (load)
now, Ffric = µ x N = µ x Fsuction
& Fsuction = ΔP x A
so, Ffric = µ x ΔP x A = W

Assume, µ = 0.1
Patm =1 bar (0.1N/mm²)
Pi = 0.8bar (0.08N/mm²)
A = π x d² /4 = 6361.73mm² (d = 90mm)

thus, W = 0.1 x (0.1 - 0.08) x 6361.73 = 12.72N = 1.2kg (approx)

However, what has me puzzled is that the Load W will also have a moment acting on the suction cup and this moment if considered in the centre of the cup, will be balanced by the Fsuction till it fails under a 'peeling-off' action (in this case the top end will peel as W is acting downwards.

This gives, W x 150mm = Fsuction x 45 (radius of cup)....... considering moment in the centre.
=> W = (ΔP x π x d² /4) x 45 / 150 = 38.17 N = 3.8kg (approx)

Was hoping to get feedback on whether either of the approaches are correct.
Thanks
 
Acenish said:
Was hoping to get feedback on whether either of the approaches are correct.
The cup could unstick from the glass, or it could slide down the glass.

Area of cup = Pi*(0.045)^2 = 6.36e-3
Differential pressure = 0.25 bar * 100 kPa/bar = 25 kPa
Cup force against wall = area * pressure = 159 N.

At what vertical load will the cup slide down the wall?
Note that it is independent of the rod lever arm length.
Apply friction; 159 N * 0.2 = 31.8 N.
31.8 / 9.8 = 3.24 kg.

If it did not slide, the cup would break off the surface at;
Assume the length of the rod is measured from the glass.
Fvert = 159 N * (45 mm / 150 mm) = 47.7 N.
47.7 / 9.8 = 4.867 kg.

So the cup will slide at 3.24 kg.
 
Acenish said:
Assume, coefficient of friction between suction cup and glass as 0.2
Acenish said:
Assume, µ = 0.1
 
Thanks for response.
Values are arbitrary and I am interested in the approach.

Glad to know, I wasn't off the mark!
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top