- #1
- 143
- 0
Satellite of mass m is moving with velocity v in a circular orbit of radius r about mass M.
Find the orbital angular momentum.
Know
[tex]v = \sqrt{\frac{GM}{r}}[/tex]
Orbital angular momentum of a system is defined as the angular momentum of the center of mass of the system.
Let the origin be at mass M.
[tex]r_{cm} = \frac{m}{M + m} r[/tex]
[tex]v_{cm} = \frac{v}{r} \frac{m}{M + m} r = \frac{vm}{M+m}[/tex]
[tex]l = r_{cm} \times p_{cm} = (M + m) r_{cm} v_{cm} = \frac{m^2 rv}{M+m} = \frac{m^2}{m+M} \sqrt{GMr}[/tex]
Correct answer in text is [tex]m \sqrt{GMr}[/tex]
Find the orbital angular momentum.
Know
[tex]v = \sqrt{\frac{GM}{r}}[/tex]
Orbital angular momentum of a system is defined as the angular momentum of the center of mass of the system.
Let the origin be at mass M.
[tex]r_{cm} = \frac{m}{M + m} r[/tex]
[tex]v_{cm} = \frac{v}{r} \frac{m}{M + m} r = \frac{vm}{M+m}[/tex]
[tex]l = r_{cm} \times p_{cm} = (M + m) r_{cm} v_{cm} = \frac{m^2 rv}{M+m} = \frac{m^2}{m+M} \sqrt{GMr}[/tex]
Correct answer in text is [tex]m \sqrt{GMr}[/tex]