Calculating a Triple Integral in a Bounded Region

Click For Summary
SUMMARY

The forum discussion focuses on calculating the triple integral $\iiint_D x^2\,dx\,dy\,dz$ over the bounded region $D = \{(x,y,z) \mid z \geq 0, x^2+y^2 \leq 1, x^2+y^2+z^2 \leq 4\}$. The participants derive the limits for $z$, $y$, and $x$, and reformulate the integral using cylindrical coordinates for simplification. The final expression involves evaluating integrals with respect to $r$ and $\theta$, leading to the result $\frac{(64 - 15\sqrt{3})\pi}{15}$ for the integral.

PREREQUISITES
  • Understanding of triple integrals in multivariable calculus
  • Familiarity with cylindrical coordinates and their application in integration
  • Knowledge of trigonometric identities and integrals
  • Proficiency in evaluating definite integrals
NEXT STEPS
  • Study the application of cylindrical coordinates in triple integrals
  • Learn about the evaluation of integrals involving trigonometric functions
  • Explore the properties of integrals over bounded regions in three-dimensional space
  • Practice solving triple integrals with varying limits and coordinate transformations
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are involved in multivariable calculus, particularly those working with triple integrals and coordinate transformations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $D$ be the space $\{x,y,z)\mid z\geq 0, x^2+y^2\leq 1, x^2+y^2+z^2\leq 4\}$. I want to calculate the integral $\iiint_D x^2\,dx\,dy\,dz$. I have done the following:

We have that $x^2+y^2+z^2\leq 4\Rightarrow z^2\leq 4-x^2-y^2 \Rightarrow -\sqrt{4-x^2-y^2}\leq z\leq \sqrt{4-x^2-y^2}$. Since $z\geq 0$ we get that $0\leq z \leq \sqrt{4-x^2-y^2}$.

It holds that $4-x^2-y^2\geq 0$, i.e. $x^2+y^2\leq 4$ since $x^2+y^2\leq 1$.

We have that $x^2+y^2\leq 1 \Rightarrow y^2\leq 1-x^2 \Rightarrow -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}$.

It must hold that $1-x^2\geq 0 \Rightarrow x^2\leq 1 \Rightarrow -1\leq x\leq 1$.

Therefore $D$ can be written also in the following form: $$D=\{(x,y,z)\mid -1\leq x\leq 1, -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}, 0\leq z\leq \sqrt{4-x^2-y^2}\}$$

Therefore, we get \begin{align*}\iiint_D x^2 \,dx\,dy\,dz&=\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\left (\int_0^{\sqrt{4-x^2-y^2}}x^2 \ dz\right ) \ dy\right ) \ dx \\ & =\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x^2\sqrt{4-x^2-y^2} \ dy\right ) \ dx \\ & =\int_{-1}^1 x^2\left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2} \ dy\right ) \ dx \end{align*}

To calculate the inner integral $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy$ we do the following:

We set $y=\sqrt{4-x^2}\cdot \sin t$, then $dy=\sqrt{4-x^2}\cdot \cos t \ dt$.

If $y=-\sqrt{1-x^2}$ then $t=\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )$ and if $y=\sqrt{1-x^2}$ then $t=\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )$.

Therefore we get the following:
\begin{align*}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy&=\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )}(4-x^2)\cdot \cos^2t \ dt \\ & = (4-x^2)\cdot\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \frac{1+\cos (2t)}{2} \ dt \\ & = \frac{4-x^2}{2}\cdot\left [ t+\frac{\sin (2t)}{2} \right ]_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \\ & = \frac{4-x^2}{2}\cdot\left [ \arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )-\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right ) \\ +\frac{1}{2}\sin \left (2\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )-\frac{1}{2}\sin \left (\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )\right ]\end{align*}

Is everything correct so far? How could we continue? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $D$ be the space $\{x,y,z)\mid z\geq 0, x^2+y^2\leq 1, x^2+y^2+z^2\leq 4\}$. I want to calculate the integral $\iiint_D x^2\,dx\,dy\,dz$. I have done the following:

We have that $x^2+y^2+z^2\leq 4\Rightarrow z^2\leq 4-x^2-y^2 \Rightarrow -\sqrt{4-x^2-y^2}\leq z\leq \sqrt{4-x^2-y^2}$. Since $z\geq 0$ we get that $0\leq z \leq \sqrt{4-x^2-y^2}$.

It holds that $4-x^2-y^2\geq 0$, i.e. $x^2+y^2\leq 4$ since $x^2+y^2\leq 1$.

We have that $x^2+y^2\leq 1 \Rightarrow y^2\leq 1-x^2 \Rightarrow -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}$.

It must hold that $1-x^2\geq 0 \Rightarrow x^2\leq 1 \Rightarrow -1\leq x\leq 1$.

Therefore $D$ can be written also in the following form: $$D=\{(x,y,z)\mid -1\leq x\leq 1, -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}, 0\leq z\leq \sqrt{4-x^2-y^2}\}$$

Therefore, we get \begin{align*}\iiint_D x^2 \,dx\,dy\,dz&=\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\left (\int_0^{\sqrt{4-x^2-y^2}}x^2 \ dz\right ) \ dy\right ) \ dx \\ & =\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x^2\sqrt{4-x^2-y^2} \ dy\right ) \ dx \\ & =\int_{-1}^1 x^2\left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2} \ dy\right ) \ dx \end{align*}

To calculate the inner integral $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy$ we do the following:

We set $y=\sqrt{4-x^2}\cdot \sin t$, then $dy=\sqrt{4-x^2}\cdot \cos t \ dt$.

If $y=-\sqrt{1-x^2}$ then $t=\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )$ and if $y=\sqrt{1-x^2}$ then $t=\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )$.

Therefore we get the following:
\begin{align*}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy&=\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )}(4-x^2)\cdot \cos^2t \ dt \\ & = (4-x^2)\cdot\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \frac{1+\cos (2t)}{2} \ dt \\ & = \frac{4-x^2}{2}\cdot\left [ t+\frac{\sin (2t)}{2} \right ]_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \\ & = \frac{4-x^2}{2}\cdot\left [ \arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )-\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right ) \\ +\frac{1}{2}\sin \left (2\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )-\frac{1}{2}\sin \left (\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )\right ]\end{align*}

Is everything correct so far? How could we continue? (Wondering)

This would be infinity times easier to do with cylindrical polar co-ordinates, considering most of your boundary is a cylinder...

Since $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } , \, y = r\sin{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} x^2 + y^2 = r^2 \end{align*}$, you have

You have $\displaystyle \begin{align*} 0 \leq z \leq \sqrt{ 4 - \left( x^2 - y^2 \right) } \implies 0 \leq z \leq \sqrt{ 4 - r^2 } \end{align*}$ with $\displaystyle \begin{align*} 0 \leq r \leq 1 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq \theta \leq 2\,\pi \end{align*}$, giving

$\displaystyle \begin{align*} \int{\int{\int_D{x^2 \,\mathrm{d}x}\,\mathrm{d}y}\,\mathrm{d}z} &= \int_0^{2\,\pi}{\int_0^1{\int_0^{\sqrt{4-r^2}}{\left[ r\cos{ \left( \theta \right) } \right] ^2 \, r\,\mathrm{d}z}\,\mathrm{d}r}\,\mathrm{d}\theta} \\ &= \int_0^{2\,\pi}{ \int_0^1{ r^3\cos^2{ \left( \theta \right) } \, \left[ z \right] _0^{\sqrt{4 - r^2}} \,\mathrm{d}r } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \int_0^1{ r^3\,\sqrt{4 - r^2} \cos^2{ \left( \theta \right) } \,\mathrm{d}r } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \frac{1}{2} \int_1^0{r^2\,\sqrt{4 - r^2} \left( -2\,r \right) \cos^2{ \left( \theta \right) } \,\mathrm{d}r } \,\mathrm{d}\theta } \end{align*}$

Now let $\displaystyle \begin{align*} u = 4 - r^2 \implies \mathrm{d}u = -2\,r \end{align*}$ noting that $\displaystyle \begin{align*} u \left( 1 \right) = 3 \end{align*}$ and $\displaystyle \begin{align*} u \left( 0 \right) = 4 \end{align*}$ giving

$\displaystyle \begin{align*} \int_0^{2\,pi}{\frac{1}{2} \int_1^0{ r^2\,\sqrt{4 - r^2} \left( -2\,r \right) \cos^2{ \left( \theta \right) } \,\mathrm{d}r }\,\mathrm{d}\theta} &= \int_0^{2\,\pi}{ \frac{1}{2}\cos^2{ \left( \theta \right) } \int_3^4{ \left( 4 - u \right) \,\sqrt{u} \,\mathrm{d}u } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \frac{1}{2}\cos^2{ \left( \theta \right) } \int_3^4{ \left( 4\,u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) \,\mathrm{d}u } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \frac{1}{2} \cos^2{ \left( \theta \right) } \left[ \frac{8\,u^{\frac{3}{2}}}{3} - \frac{2\,u^{\frac{5}{2}}}{5} \right] _3^4 \, \mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{\frac{1}{2}\cos^2{ \left( \theta \right) } \left[ \left( \frac{64}{3} - \frac{64}{5} \right) - \left( 8\cdot 3^{\frac{1}{2}} - 2 \cdot 3^{ \frac{3}{2}} \right) \right] \,\mathrm{d}\theta} \\ &= \int_0^{2\,\pi}{ \frac{1}{2} \cos^2{ \left( \theta \right) } \left( \frac{320}{15} - \frac{192}{15} - \frac{30\,\sqrt{3}}{15} \right) \,\mathrm{d}\theta } \\ &= \frac{64 - 15\,\sqrt{3}}{15} \int_0^{2\,\pi}{ \cos^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= \frac{64 - 15\,\sqrt{3}}{30} \int_0^{2\,\pi}{ \left[ 1 + \cos{ \left( 2\,\theta \right) } \right] \,\mathrm{d}\theta } \\ &= \frac{64 - 15\,\sqrt{3}}{30} \left[ \theta + \frac{1}{2}\sin{ \left( 2\,\theta \right) } \right] _0^{2\,\pi} \\ &= \frac{64 - 15\,\sqrt{3}}{30} \left\{ \left[ 2\,\pi - \frac{1}{2} \sin{ \left( 4\,\pi \right) } \right] - \left[ 0 - \frac{1}{2} \sin{ \left( 0 \right) } \right] \right\} \\ &= \frac{ \left( 64 - 15\,\sqrt{3} \right) \pi }{15} \end{align*}$
 
I see! Thank you very much! (Smile)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K