Calculating Amplitude in Standard Model

Click For Summary
The calculation of the amplitude in the Standard Model process is under review, focusing on three contributing diagrams. The initial calculation presented is mostly correct, but it requires a modification in the third term to include an additional factor of λ in the numerator. This adjustment reflects the exchange of a single Higgs boson between the two fermions, necessitating the inclusion of λ at the vertex. The corrected amplitude should accurately represent the interactions involved. The discussion emphasizes the importance of precise factors in quantum field theory calculations.
ultrapoci
Messages
1
Reaction score
0
Homework Statement
Draw the Feynman diagrams contributing to the process ##\mu^+ \mu^- \rightarrow H + H## at the lowest electroweak order and calculate the squared amplitude
Relevant Equations
Vertex of the Feynman diagrams between two fermions and the Higgs boson is ##i\frac{m}{v}##, and the triple interaction vertex of the Higgs boson is ##i \lambda v## where ##m## is the muon's mass, ##v## is the vacuum expectation value of the Higgs boson, and ##\lambda## is its coupling constant.
Hi! I'd like to ask you if my calculation of the amplitude on the mentioned process in the Standard Model is correct. The three diagrams contributing at lowest order should be
1637926237606.png

where in the middle one the two Higgs boson are NOT forming a quartic interaction vertex.
My attempt at calculating the (not yet squared) amplitude is this: $$A = \bar{v}(p_2) \left( \frac{im}{v} \frac{i}{\gamma^\mu(p_1-p_3)_\mu} \frac{im}{v} + \frac{im}{v} \frac{i}{\gamma^\mu(p_1-p_4)_\mu} \frac{im}{v} + \frac{im}{v} \frac{i}{q^2 - M_H^2 +i\Gamma_H M_H} i \lambda v \right) u(p_1)$$ Is this right?
 
Physics news on Phys.org
Thanks!Yes, that is correct. However, note that the third term should include a factor of $\lambda$ in the numerator (i.e., it should be $\frac{im\lambda}{v}\frac{i}{q^2 - M_H^2 +i\Gamma_H M_H}i\lambda v$). This is because this term corresponds to the exchange of a single Higgs boson between the two fermions, and thus the vertex should include a factor of $\lambda$.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...