Abigale
- 53
- 0
Hey,
in my notes I have calculated the Eigenenergie of the Hamiltonian:
<br /> <br /> H= \hbar \omega (n+\frac{1}{2}) \cdot<br /> <br /> \begin{pmatrix}<br /> 1 & 0 \\<br /> 0 & 1 <br /> \end{pmatrix}<br /> <br /> +\hbar<br /> <br /> \begin{pmatrix}<br /> \frac{\Omega_0 -\omega_0}{2} & g \sqrt{n+1} \\<br /> g \sqrt{n+1}& -\frac{\Omega_0 -\omega_0}{2} <br /> \end{pmatrix}<br /> <br />
We have just calculated:
$$det\begin{pmatrix}
\frac{\Omega_0 -\omega_0}{2} - \lambda & g \sqrt{n+1} \\
g \sqrt{n+1}& -\frac{\Omega_0 -\omega_0}{2} - \lambda
\end{pmatrix} => \lambda = \pm \sqrt{
\frac{\Omega_0 -\omega_0}{4}+g^2(n+1)
}$$
And then we said the Eigenenergie is:
E=\hbar \omega(n+\frac{1}{2}) \pm \hbar\sqrt{<br /> \frac{\Omega_0 -\omega_0}{4}+g^2(n+1)<br /> }
Why can I add \hbar \omega(n+\frac{1}{2}) to the result of the determinant?
Or why is it possible to neglect the first term of the hamiltonian in the determinant?
I also know that:
[N,H]=[a^\dagger a + c_{1}^\dagger c_1 , H] =0
a is a photon annihilation operator and c a fermionic annihilation operator.
The Hamiltonian in an other notation is H = \hbar \omega a^\dagger a + \frac{1}{2} \hbar \Omega(c^\dagger _1 c_1 -c^\dagger _0 c_0) +\hbar g(a c^\dagger _1 c _0 + a^\dagger c^\dagger _0 c_1).
I regard interaction of photons and fermions. So the states looks like |01>|n> or |10>|n+1> where n is the number of photons.
Thank you very much!
in my notes I have calculated the Eigenenergie of the Hamiltonian:
<br /> <br /> H= \hbar \omega (n+\frac{1}{2}) \cdot<br /> <br /> \begin{pmatrix}<br /> 1 & 0 \\<br /> 0 & 1 <br /> \end{pmatrix}<br /> <br /> +\hbar<br /> <br /> \begin{pmatrix}<br /> \frac{\Omega_0 -\omega_0}{2} & g \sqrt{n+1} \\<br /> g \sqrt{n+1}& -\frac{\Omega_0 -\omega_0}{2} <br /> \end{pmatrix}<br /> <br />
We have just calculated:
$$det\begin{pmatrix}
\frac{\Omega_0 -\omega_0}{2} - \lambda & g \sqrt{n+1} \\
g \sqrt{n+1}& -\frac{\Omega_0 -\omega_0}{2} - \lambda
\end{pmatrix} => \lambda = \pm \sqrt{
\frac{\Omega_0 -\omega_0}{4}+g^2(n+1)
}$$
And then we said the Eigenenergie is:
E=\hbar \omega(n+\frac{1}{2}) \pm \hbar\sqrt{<br /> \frac{\Omega_0 -\omega_0}{4}+g^2(n+1)<br /> }
Why can I add \hbar \omega(n+\frac{1}{2}) to the result of the determinant?
Or why is it possible to neglect the first term of the hamiltonian in the determinant?
I also know that:
[N,H]=[a^\dagger a + c_{1}^\dagger c_1 , H] =0
a is a photon annihilation operator and c a fermionic annihilation operator.
The Hamiltonian in an other notation is H = \hbar \omega a^\dagger a + \frac{1}{2} \hbar \Omega(c^\dagger _1 c_1 -c^\dagger _0 c_0) +\hbar g(a c^\dagger _1 c _0 + a^\dagger c^\dagger _0 c_1).
I regard interaction of photons and fermions. So the states looks like |01>|n> or |10>|n+1> where n is the number of photons.
Thank you very much!