Calculating eletric potential using line integral of electric field

AI Thread Summary
The discussion focuses on the calculation of electric potential using the line integral of the electric field. The user correctly identifies the electric field at point P but encounters issues when integrating to find the potential, leading to an incorrect result. They compare their integral approach with a previously verified method that yields the correct potential expression. The conversation emphasizes the importance of verifying calculator outputs and understanding potential discrepancies in results. Ultimately, the user seeks clarification on their integral calculation and the differences in results obtained.
pedromatias
Messages
3
Reaction score
1
Homework Statement
A bar of length l has charge Q that is linearly distributed, with constant charge density λ. There is a point P at distance D from the center of mass of the bar, and P is in the same axis as the bar. Knowing the electric field, calculate the electric potential at P using a line integral. See figure.
Relevant Equations
The difference of potential between two points is symmetric to the line integral between those two points of the dot product between the electric field and the line.
So, I am able to calculate the electric potential in another way but I know that this way is supposed to work as well, but I don't get the correct result.

I calculated the electric field at P in the previous exercise and its absolute value is $$ E = \frac {k Q} {D^2-0.25*l^2} $$ This is correct as per the solution. From the figure, we can see that the direction of the electric field at P is that of the negative x direction.

So, to calculate the electric potential I took advantage of the fact that at infinite the potential is zero and did

$$ V_P = \int_D^{\infty} \frac {k Q} {r^2-0.25*l^2} \, dr$$

However, this integral does not give the correct result. I inserted it into integral calculator and the result was not the correct one, which is

$$ k \lambda \ln \frac {D+\frac{l}{2}} {D-\frac{l}{2}}$$

I don't understand what I am doing incorrectly. My reasoning is that I have the expression for the Electric field in a point at a distance ##r## in the axis of ##P##, and that Electric field points in the same direction as the straight line path from ##P## to ##\infty##, so the dot product is the magnitude of the electric field.

The way I solved it correctly and which gives me the right solution is, where ##x## is the distance from P,

$$ dv = k \frac {dq}{x}$$
$$ dv = k \lambda \frac {dx}{x}$$
$$ V = \int_{D-0.5l}^{D+0.5l} \frac {k \lambda} {x} \, dx $$
$$ V = k \lambda \ln \frac {D+\frac{l}{2}} {D-\frac{l}{2}}$$
 

Attachments

  • Screenshot (130).png
    Screenshot (130).png
    15.3 KB · Views: 131
Physics news on Phys.org
What result does your calculator give? How have you verified that it is different from the one you got? Sometimes solutions given by calculators look different but aren't.
 
  • Like
Likes pedromatias and vela
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top