I Calculating Killing vectors of Schwarzschild metric

MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
I am trying to understand the solution to exercise 7.10(e) on pages 175-176 of Robert Scott's student's manual to Schutz's textbook.

He writes the following:
Table 7.1 rows four, five and six, lists the three Killing vector fields associated with invariance for rotations about the three spatial Cartesian axes.
Because Schwarzschild also has spherical symmetry it enjoys the same Killing vector fields.
We can transform these into the spherical coordinates of (ii) using relations in Appendix B giving:
$$\vec{Q}=\vec{e_t}$$
$$\vec{R}=\vec{e_\phi}$$
$$\vec{S}=\bigg(\frac{\partial \theta}{\partial x} S^x +\frac{\partial \theta}{\partial z} S^z\bigg)\vec{e_\theta}+\bigg(\frac{\partial \phi}{\partial x} S^x+\frac{\partial \phi}{\partial z} S^z\bigg)\vec{e_\phi}=\cos \phi \vec{e_\theta}-\cot \theta \sin \phi \vec{e_\phi}$$
$$\vec{T}=\bigg(\frac{\partial \theta}{\partial x} T^x +\frac{\partial \theta}{\partial z} T^z\bigg)\vec{e_\theta}+\bigg(\frac{\partial \phi}{\partial x} T^x+\frac{\partial \phi}{\partial z} T^z\bigg)\vec{e_\phi}=\sin \phi \vec{e_\theta}-\cot \theta \cos \phi \vec{e_\phi}$$

I don't understand how to find ##S^x, S^z## or ##T^x,T^z## from the metric or from the cartesian representation of the rotation vectors?
The derivatives are calculated with spherical coordinates which I understand how to achieve them.

Any help?
 
Last edited:
Physics news on Phys.org
Ok, I believe I found my answer: ##S^x=z , S^z=-x## and ##T^x=0, T^z=-y##.
 
There's typo in the text, it should be ##T^y=z , T^z=-y##.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top