Calculating Net Force on a Wheel: Magnitude and Direction | 0.350 m Radius

Click For Summary
SUMMARY

The discussion focuses on calculating the net force on a wheel with a radius of 0.350 m, subjected to three distinct forces. The user calculated a net force of Fnet = 14.4 N at an angle of -3.44° using vector addition and the Pythagorean theorem. The conversation clarifies that net force (Fnet) and net torque (𝜏net) are separate concepts and should not be directly related when forces are applied at different points on the wheel. The user confirmed their calculations and understanding of the problem's intent, which emphasizes the distinction between force and torque.

PREREQUISITES
  • Understanding of vector addition in physics
  • Familiarity with torque and its relationship to forces
  • Knowledge of trigonometric functions for angle calculations
  • Basic principles of mechanics involving rotational motion
NEXT STEPS
  • Study vector addition techniques in physics
  • Learn about torque calculations and their applications
  • Explore the relationship between linear and angular motion
  • Review problems involving forces on rotating bodies
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and rotational dynamics, as well as educators seeking to clarify concepts of force and torque in practical applications.

omal3rab
Messages
2
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
Homework Statement
Three forces are applied to a wheel of radius 0.350 m, as shown in the figure. One force is perpendicular to the rim, one is tangent to it, and the other one makes a 40.0 degree angle with the radius, and a 10 degree angle with the horizontal.


a) What is the magnitude of the net force on the wheel? [3 marks]
Relevant Equations
Fnet = sqrt(Fnetx^2 + Fnety^2)
tan(theta)= Fnety/Fnetx
Screenshot (367).png


Three forces are applied to a wheel of radius 0.350 m, as shown in the figure. One force is perpendicular to the rim, one is tangent to it, and the other one makes a 40.0 degree angle with the radius, and a 10 degree angle with the horizontal.

a) What is the magnitude of the net force on the wheel? [3 marks]


I am having trouble with Part a) of this problem, I got Parts b) and c) correct, but there's no answer available for a). I don't know whether I should relate Fnet to 𝜏net. I feel like I shouldn't, since the forces are not all being applied to the same point. I got an answer of Fnet = 14.4 N [-3.44°], is this correct? I made my coordinate system positive going up and to the right, made Fnetx and Fnety statements, then related them by Pythagorean Theorem.

Fnetx: 14.6cos(10) = 14.3782 N
Fnety: 8.5 + 14.6sin(10) - 11.9 = -0.86 N
theta = arctan(0.86/14.3782) = 3.44° (below horizontal, hence the negative sign above)
Fnet: sqrt((14.3782)^2 +(-0.86)^2)) = 14.404 N
 
Last edited:
Physics news on Phys.org
omal3rab said:
View attachment 335410I am having trouble with Part a) of this problem, I got Parts b) and c) correct, but there's no answer available for a). I don't know whether I should relate Fnet to 𝜏net. I feel like I shouldn't, since the forces are not all being applied to the same point. I got an answer of Fnet = 14.4 N [-3.44°], is this correct? I made my coordinate system positive going up and to the right, made Fnetx and Fnety statements, then related them by Pythagorean Theorem.

Fnetx: 14.6cos(10) = 14.3782 N
Fnety: 8.5 + 14.6sin(10) - 11.9 = -0.86 N
theta = arctan(0.86/14.3782) = 3.44° (below horizontal, hence the negative sign above)
Fnet: sqrt((14.3782)^2 +(-0.86)^2)) = 14.404 N
Looks ok to me.
 
  • Like
Likes   Reactions: omal3rab
erobz said:
Looks ok to me.
Thank you! Does this mean I am correct in my assumption that I can't relate Fnet to Torque net since the forces are not all being applied to the same point? I'm still confused on what's the point of this question, since it doesn't help me solve the next part. I could be overthinking this, but it just seems odd.
 
omal3rab said:
Thank you! Does this mean I am correct in my assumption that I can't relate Fnet to Torque net since the forces are not all being applied to the same point? I'm still confused on what's the point of this question, since it doesn't help me solve the next part. I could be overthinking this, but it just seems odd.
It's an exercise in vector addition, I wouldn't over think it. The net torque is a different quantity from the net force.
 
omal3rab said:
Does this mean I am correct in my assumption that I can't relate Fnet to Torque net since the forces are not all being applied to the same point?
Yes.
omal3rab said:
what's the point of this question, since it doesn't help me solve the next part
The point is either to check you understand the difference or perhaps to drive home that they are different.
 
  • Like
Likes   Reactions: berkeman

Similar threads

Replies
4
Views
817
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K