Calculating Probability of 2+ Homeruns for Baseball Player in 4 At-Bats

  • Thread starter Thread starter Muck
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
A baseball player with a 5% chance of hitting a homerun per at-bat has a specific probability of hitting 2 or more homeruns in 4 at-bats. The calculations involve determining the probabilities for 0 and 1 homerun, which sum to approximately 0.98598125, allowing the probability of hitting at least 2 homeruns to be found by subtracting this from 1. The correct formula for calculating the probability of hitting k homeruns in n at-bats is based on the binomial coefficient, expressed as nCk(0.05)^k(0.95)^(n-k). This scenario is modeled as a Bernoulli trial, similar to tossing a coin with a 5% chance of heads.
Muck
Messages
2
Reaction score
0
The question: A baseball player has a 5% chance to hit a homerun each at bat. If the player is up 4 times, what is the chance he hits 2 or more homeruns. I came up with the answer, but this was a long process. I need a formula. And is there an easier way of counting the possibilities?

I did it like this:

Probability of 0 out of 4 + 1 out of 4 = 1.401875

Probability of 0 out of 4 is (0.95)(0.95)(0.95)(0.95)(1) with 1 possibility

Probability of 1 out of 4 is (0.05)(0.95)(0.95)(0.95)(4) with 4 possibilities so

The other 11 possibly scenarios are 6 to do 2 out of 4, 4 to do 3 out of 4, and 1 to do 1 out of 4, for a total of 16 (4x4) but is there an easier way than counting these?

Thank you!

EDIT: for 'player' :)
 
Last edited:
Physics news on Phys.org
Your calculations are wrong somewhere. For one, it should be obvious that the first two cases can't have a probability greater than 1, in fact the total probabilities of all the cases should be one. The probability for the first two cases is 0.98598125. Anyways, you can see it was pretty easy to calculate the first two numbers. The probability for 2, 3, or 4 homeruns (i.e. at least 2) is 1 - 0.98598125. You could also calculate it as:

Probability of 2 out of 4 is (0.05)(0.05)(0.95)(0.95)(6) with 6 possibilities

Probability of 3 out of 4 is (0.05)(0.05)(0.05)(0.95)(4) with 4 possibilities

Probability of 4 out of 4 is (0.05)(0.05)(0.05)(0.05)(1) with 1 possibility

Sum those together you'll get the same number as 1 - 0.98598125.
 
I wasn't aware that it was the baseball that hit the homerun!


Assuming that any batter has probabilty 0.05 of hitting a homerun at any "at bat", then the probability of a batter hitting k homeruns in n "at bat"s is nCk(0.05)k[/sub](0.95)n-k where nCk is the binomial coefficient: n!/(k!(n-k)!).
 
Thank you.
 
This is actually a Bernoulli trial problem that can be seen as tossing a coin, where the chance for heads is .05. Since the total probability is 1 = (H+T)^4. We can just look at 1 minus the tail of the series:

1-4HxT^3-T^4.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top