B Calculating solar irradiance at each planet?

AI Thread Summary
The discussion centers on the calculation of solar irradiance for various planets using the inverse square law, starting from Earth's baseline of 1376 W/m^2. Significant discrepancies were noted in the calculated values for Mercury and Mars compared to actual measurements, with Mercury's value being particularly off due to its elliptical orbit and the influence of General Relativity. Participants clarified that the values from Wolfram Alpha reflect real-time solar irradiance, which can vary based on the planets' positions in their orbits, rather than average distances. The calculations were challenged, with suggestions to provide detailed arithmetic for verification. Overall, the conversation emphasizes the complexities involved in accurately calculating solar irradiance for planets with non-circular orbits.
bbbl67
Messages
216
Reaction score
21
So I'm getting somewhat weird numbers when trying to calculate the solar irradiance at each planet. Starting with a baseline of irradiance at Earth of 1376 W/m^2, I use the inverse square law against distance. I find the values for Mercury and Mars are really off, while Venus & Neptune are almost right on the money! What's wrong with my method?
  1. Planet: calculated value (W/m2), actual value (W/m2), percent diff
  2. Mercury: 9183, 6283, 46.15%
  3. Venus: 2630, 2600, 1.15%
  4. Mars: 592.7, 710.6, 19.89%
  5. Jupiter: 50.82, 47.42, 6.69%
  6. Saturn: 15.128245, 13.51, 10.70%
  7. Uranus: 3.736, 3.465, 7.25%
  8. Neptune: 1.522, 1.526, 0.27%
I'm taking the mean orbital radius and solar flux as stated in Wolfram Alpha, for example:
mars average orbital radius - Wolfram|Alpha
solar flux at uranus - Wolfram|Alpha
 
Astronomy news on Phys.org
Possible problem for Mars, orbit is fairly elliptical, so average radius may not be accurate enough.
 
  • Like
Likes Bandersnatch and bbbl67
Please show your calculations, especially for mercury. I think your arithmetic must be off, or else their number is incorrect. ## \\ ## Edit: See: https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html They give 9082.7 for Solar irradiance on about line 15.
 
Last edited:
mathman said:
Possible problem for Mars, orbit is fairly elliptical, so average radius may not be accurate enough.
And Mercury has that issue with General Relativity.
 
Charles Link said:
Please show your calculations, especially for mercury. I think your arithmetic must be off, or else their number is incorrect. ## \\ ## Edit: See: https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html They give 9082.7 for Solar irradiance on about line 15.
Well, I'm just using Wolfram Alpha to do the calculations:
Mercury: 1376 W/m^2 * (Earth average orbit radius)^2 / (Mercury average orbit radius)^2 - Wolfram|Alpha
Mars: 1376 W/m^2 * (Earth average orbit radius)^2 / (Mars average orbit radius)^2 - Wolfram|Alpha

So you're saying my calculations are more right than the values in Wolfram-Alpha?
 
The values reported by W-A when you type in e.g. 'Mercury solar irradiance' are (as noted) based on time-dependent distance from the Sun. I.e., these are not the average values, but values at this particular moment.
This simply means that for planets whose current position in their elliptical orbits is significantly different than the average distance, the current solar irradiance will also differ significantly from what you get from calculations which assume circular orbit.

If you scroll down the results page, you'll see an entry along the lines of X * average solar irradiance of Y. Those should be closer to what you're calculating.
 
These are the values I get, along with bbbl67's:

values are watts/meter^2
\begin{matrix}
Planet & peri & ave & aph & current & wolf & bbbl67\\
Mercury & 14600 & 9187 & 6309 & 6452 & 9183 & 6283\\
Venus & 2669 & 2632 & 2596 & 2629 & 2630 & 2600\\
Earth & 1424 & 1376 & 1323 & 1392 \\
Mars & 720 & 591 & 493 & 718 & 593 & 711 \\
Ceres & 210 & 179 & 155 & 204 \\
Jupiter & 56.2 & 50.8 & 46.2 & 47.9 & 50.8 & 47.4\\
Saturn & 16.8 & 15.0 & 13.5 & 13.7 & 15.1 & 13.5\\
Uranus & 4.11 & 3.73 & 3.41 & 3.50 & 3.74 & 3.47\\
Neptune & 1.55 & 1.52 & 1.50 & 1.54 & 1.52 & 1.53\\
Pluto & 1.56 & 0.88 & 0.57 & 1.22
\end{matrix}

"current" values are based on data from 3 different sources. All of them were a tad bit different.
Sources:
 
  • Like
Likes Charles Link
@OmCheeto Thank you=that explains it. Mercury must have a very elliptical orbit.
 
  • #10
Charles Link said:
@OmCheeto Thank you=that explains it. Mercury must have a very elliptical orbit.

Almost as elliptical as Pluto.

distances in AU
\begin{matrix}
planet & aph & perih & aph/perih \\
Mercury & 0.467 & 0.307 & 1.52 \\
Venus & 0.728 & 0.718 & 1.01 \\
Earth & 1.02 & 0.983 & 1.04 \\
Mars & 1.67 & 1.382 & 1.21 \\
Ceres & 2.98 & 2.56 & 1.16 \\
Jupiter & 5.46 & 4.95 & 1.10 \\
Saturn & 10.1 & 9.04 & 1.12 \\
Uranus & 20.1 & 18.3 & 1.10 \\
Neptune & 30.3 & 29.8 & 1.02 \\
Pluto & 49.3 & 29.7 & 1.66
\end{matrix}

Btw, I had everything locked and loaded from a HW problem from last December.
When I looked at the equation for "watts/m2 = 1376 / r2", it really confused me. It was missing all manner of values, π's and squares. What kind of voodoo math was I up to that day? Then I realized those all dropped out because Earth is at 1 AU.
 
  • Like
Likes Charles Link
  • #11
Bandersnatch said:
The values reported by W-A when you type in e.g. 'Mercury solar irradiance' are (as noted) based on time-dependent distance from the Sun. I.e., these are not the average values, but values at this particular moment.
This simply means that for planets whose current position in their elliptical orbits is significantly different than the average distance, the current solar irradiance will also differ significantly from what you get from calculations which assume circular orbit.

If you scroll down the results page, you'll see an entry along the lines of X * average solar irradiance of Y. Those should be closer to what you're calculating.
Ah, I didn't realize that Wolfram-Alpha used real-time values for those!
 
Back
Top