Calculating Speed of Center of Mass for Rotating Disk on Pivot

AI Thread Summary
The discussion focuses on calculating the speed of the center of mass for a rotating disk pivoted at its rim. The conservation of energy principle is applied, considering both translational and rotational kinetic energy. The parallel axis theorem is highlighted for adjusting the moment of inertia when the pivot is not at the center of mass. Two approaches are suggested: treating the disk as rotating about the pivot or considering the combined translational and rotational energies. The participants emphasize flexibility in choosing the method that best aids understanding.
dkgojackets
Messages
38
Reaction score
0

Homework Statement



A uniform solid disk of radius (r) 6.71 m and mass (m) 38 kg is free to rotate on a frictionless pivot through a point on its rim. If facing the disk, the pivot is on the left side. The disk is then released. What is the speed of the center of mass when the disk reaches a position such that the pivot is now at the top (lowest point in swing)?

What is the speed of the lowest point of the disk in said position?

Repeat part one for a uniform hoop.

Homework Equations



Looks like conservation of energy here. I know that the disk drops down one radius, so my initial energy was just mgr. At the bottom it has translational and rotational KE. .5mv^2 + .5Iw^2.

The Attempt at a Solution



Not sure, I'm looking for a step in the right direction. Probably need to use the parallel axis theorem somehow since it isn't rotating through the center?
 
Physics news on Phys.org
If your formula KE = .5mv^2 + .5Iw^2 , v is the linear velocity of the CG of the disk, and I is the inertia about the CG.

The disk is pivoting about a point on the circumference, and that gives you a relation between the velocity at the CG and the rotational speed w.
 
I know I can substitute v/r for w. I have mgr = .5mv^2 + .5I(v/r)^2, with v being velocity at the center of mass.

I have r and m, I just don't know how to adjust the moment of inertia for it rotating around the edge.
 
If you, as AlephZero suggests, treat the total KE as the sum of the translational KE of the cm (.5mv^2) plus the rotational KE about the cm (.5Iw^2), then I is about the cm.

You can also treat the disk as in pure rotation about the pivot, in which case the KE = .5Iw^2, where I is now about the pivot point not the cm. (Use the parallel axis theorem to find I.)
 
If you use the motion of the CG (translation and rotation) as you have done, then you don't need to adjust the moment of inertia.

The KE of a body is always the sum of two parts:

Translational energy of the CG (.5mv^2)
+ Rotational energy of the body rotating about the CG (.5Iw^2).

---------------------------

You could do the problem a different way, and consider the body rotating about the pivot. In that case you would use the parallel axis theorem to get the moment of inertia about the pivot = I (about the CG) + mr^2.

If you do it that way, there is no translation energy (because the pivot is not moving), but the additional rotational energy of .5(mr^2)w^2 is the same as the translational energy of the CG in the first method, because v = rw.

Do it whichever way you find easiest to think about.
 
Got it. I was just combining the two approaches, using the parallel axis theorem to find MoI in the first equation.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top