Calculating Tension and Acceleration in a Pulley System with Applied Force

Click For Summary

Homework Help Overview

The discussion revolves around a pulley system with two masses (M1 = 1.5 kg and M2 = 2.5 kg) and an applied force of 25 N on the pulley. Participants are tasked with determining the tension in the strings, the acceleration of the masses, and the minimum force required to lift M2 off the ground. The problem involves concepts from dynamics and forces.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the effects of the applied force on the pulley and how it influences the tension and acceleration of the masses. There is discussion about defining reference frames for each mass and the implications of mass 2 being heavier than mass 1. Some participants express uncertainty about how to incorporate the applied force into their free body diagrams (FBDs) and equations.

Discussion Status

There is an ongoing exploration of the relationships between the forces acting on the masses and the pulley. Some participants have provided insights into setting up equations based on FBDs, while others are questioning the assumptions made regarding the acceleration of the masses and the role of the applied force. The conversation indicates a productive exchange of ideas, although no consensus has been reached on the complete solution.

Contextual Notes

Participants note that the pulley is massless, which raises questions about how the applied force affects the system. There is also mention of the original problem being part of a final exam, indicating constraints on the discussion's context. The need to treat part c) independently from parts a) and b) is highlighted, as well as the ambiguity surrounding the application of the 25 N force in the context of the problem.

  • #31
Panphobia said:

Homework Statement


2vhy77p.jpg

A force of 25 N is applied on the pulley. M1 = 1.5 kg, M2 = 2.5 kg, light frictionless strings and pulley.

a) What is the tension in the strings?
b) What is the acceleration of the masses?
c) What is the minimum Force to apply on the pulley so that M2 comes off the ground?

Homework Equations


ƩF = ma

The Attempt at a Solution


I am not totally sure how to do this question because of the extra force applied. I mean since there is another acceleration, I am thinking in my head that it won't be just mg but it will be something like m(g+ 25/9.8) but I am not sure. Also it seems like there won't be an acceleration in mass 2, but will be in mass 1. Can anyone point me in the right direction?
Yes, the pulley also accelerates. First you have to figure out the tension. The pulley is massless, so its mass times acceleration is zero: the net force acting on the pulley has to be zero. The net force is F-2T=0. Now you have T. What is it?

What forces act on the heavier mass? It is on the ground. There is an upward force T and the downward force m2g. If it is negative (is it?) the block can not accelerate upward. But it can not move downward, because of the support. Its acceleration is zero. The net force includes also the normal force and the sum of all forces is zero. The block stays on the ground. . How much should be F so it can rise?

You know T, so it is easy to find the acceleration of m1 from the equation you have shown : m1a1=T-m1g.

You see that the accelerations are not the same!

ehild
 
Physics news on Phys.org
  • #32
how did you put that image on the question??
 
  • #33
URL not relevant to the question, but there it is.
 
Last edited by a moderator:
  • #34
Panphobia said:
So F and T are in the same direction?
The direction of T depends on your standpoint. For the pulley, the Ts act downwards; for the masses, upwards.
Just to point out something I didn't notice mentioned elsewhere in the thread: the two tensions are the same because the pulley is massless (and frictionless). No mass means no moment of inertia, so no torque required to accelerate it on its axis.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 33 ·
2
Replies
33
Views
3K