Calculating the area of equilateral triangle using calculus

  • #1
634
15

Homework Statement


Calculating the area of equilateral triangle using calculus.

Homework Equations




The Attempt at a Solution


equilateral T.png

The area of the triangle is the area of the circle minus 3 times the area of the sector shown in (light blue). So, the target is to calculate the pink area first.
##y=\sqrt{r^2-x^2}##
The pink area is ##\int_{0}^{x_0} \sqrt{r^2-x^2} dx## = ##\int_{0}^{x_0} r\sqrt{1-\frac{x^2}{r^2}} dx## Putting ##x=r sin a## and doing the usual math with integration from 0 to ##\pi/6## led me to;
##r^2\int_{0}^{\pi/6} cos^2 a da##=##\frac{r^2}{2}\int_{0}^{\pi/6} cos (2a+1) da##=##\frac{r^2}{2} \left[\frac{sin2a}{2}+a\right]_0^{\pi/6}##=##\frac{r^2}{2} [\frac{1}{2}\frac{\sqrt 3}{2}+\pi/6]##=##\frac{r^2 \sqrt 3}{8} +\frac{\pi}{12}##
The blue area is then ##2 (\frac{\pi r^2}{4}-\frac{r^2 \sqrt 3}{8} -\frac{\pi}{12})##=##\frac{\pi r^2}{2}-\frac{r^2 \sqrt 3}{4} -\frac{\pi}{6})## and then the area of triangle is ##\pi r^2-3(\frac{\pi r^2}{2}-\frac{r^2 \sqrt 3}{4} -\frac{\pi}{6})##
This will not give the correct result of ##\frac{3\sqrt3 r^2}{4}##
 

Answers and Replies

  • #2
Since you know the angle a = pi/6, you should be able to calculate the x value where the blue area starts, then just integrate sqrt(r2 - x2) from there to r. That gets you the top half of the blue area.
 
  • #3
It's so much easier to integrate the area of the triangle directly.
 
  • Like
Likes Skins and scottdave
  • #4
It's so much easier to integrate the area of the triangle directly.
That too. With what he has figured, it should be easy to figure the equation of the line for the triangle.
 

Suggested for: Calculating the area of equilateral triangle using calculus

Back
Top