Calculating the degree of polarization of reflecting light

AI Thread Summary
The discussion focuses on finding an equation to calculate the degree of polarization of reflected light based on the angle of incidence and refractive indices. It references Brewster's angle, where light is fully polarized at approximately 53 degrees when reflecting off water. The participants suggest that the degree of polarization can be derived from Fresnel and Snell's equations. The complexity of the formula increases when considering birefringent and absorbing materials. Overall, the conversation seeks a precise equation for practical applications.
kaasisdebaas
Messages
4
Reaction score
0
I am looking for in an equation that's spits out the degree of polarization of reflected light, with incidence angle and the refractive indexes as inputs.
an article online article had this graph decribing the degree of polarization as a value between 0 and 1 plotted against the angle of incidence.
EWsls.png

This is related to Brewsters angle, where light with an incidence angle of around 53 degrees is completely polarized when reflecting off water. my guess is that the above graph can be deduced from Fresnel/Snells equations.
Any help finding an exact equation is appreciated.
 
Science news on Phys.org
This depends also on the material. The most general formula for birefringent and absorbing minerals is exceedingly complex.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
Hello ! As we know by definition that: "Constructive interference occurs when the phase difference between the waves is an even multiple of π (180°), whereas destructive interference occurs when the difference is an odd multiple of π." But my question is in the case of destructive interference, what happens to the energy carried by the two electromagnetic waves that annihilate, the energy carried by the electromagnetic waves also disappears, or is transformed into some other type of...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top