Calculating the energy savings of an insulated cavity in home wall construction

AI Thread Summary
To calculate the energy savings from insulating a wall cavity, start by determining the U-values for both insulated and uninsulated walls, which indicate heat loss per square meter. Multiply the difference in U-values by 24 to convert to Kwh per day per square meter. Next, find the heating degree days (HDD) for your area to assess the annual heating needs. By multiplying the daily Kwh loss by the annual HDD, you can estimate the yearly energy consumption for both wall types and determine the savings. This method can also be applied to other parts of the house to verify total heat loss against heating bills.
ioan
Messages
1
Reaction score
0
I am a client who bought a new house and the cavity in the wall was not insulated.

I can calculate the U value of the uninsulated wall and the U Value of the wall if it were insulated correctly.

front the two different U values I want to calculate how much extra energy is being lost through a meter square of the uninsulated wall.

I want this figure is Kw per meter square. Then I can measure the area of the wall and by using a typical heat of 21 degrees C and a typical heating pattern calculate how many additional Kws they have had to purchase since they bought the house.

Any help would be very welcome.
 
Engineering news on Phys.org
:welcome:

Start with the definition of R value.
https://en.wikipedia.org/wiki/R-value_(insulation)#R-value_definition.

Then, I found this source for uninsulated walls. Natuarlly, it depends on construction methods and materials.
https://builditsolar.com/References/Calculators/InsulUpgrd/RValues.htm
1673272677525.png

Concrete and Block Walls:
Above grade concrete wall including inside and outside air films = R 1.2 for 6 inch, R1.4 for 8 inch

Concrete block wall with air in cavities = R 2.0

Concrete block wall with Perlite in cavities = R 2.9
 
ioan said:
Then I can measure the area of the wall and by using a typical heat of 21 degrees C and a typical heating pattern calculate how many additional Kws they have had to purchase since they bought the house.
From your U values, you have the heat loss per square meter for both insulated and uninsulated walls. The heat loss has units of Kw per square meter per degree. Carefully check the units of your U values because they may or may not be in Kw. Multiply by 24 to get Kwh per day per square meter.

Then you find the heating degree days (HDD) for your area. Here's a good description of what HDD is in an area that uses metric units: https://safety.networkrail.co.uk/ho...nagement/energy-management-tools/degree-days/. I used search term annual heating degree days to find it.

Then multiply the Kwh per day per degree times the degree days per year to get Kwh per year. Do this for both the insulated and uninsulated walls, then subtract to find the savings. I used this method to estimate the annual gas usage for my house, and it agreed nicely with the total gas consumption. If you want the total heat loss for the house, calculate walls, windows, roof, doors, and foundation separately, then add the results. A good way to check your calculations is to do this calculation for the entire house, and compare to the annual heating bills.

The total heat loss in my house was calculated to be 13,200 BTUH (3.9 Kw) at 70 deg F inside and -20 deg F outside, and measurements confirmed that number. My own house is in an area where the average heating load is 9500 heating degree days per year, based on 65 degree F base and degrees F.
 
  • Like
Likes Lnewqban and russ_watters
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top