MHB Calculating the Height of an Isosceles Triangle Using Coordinates and Equations

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
The discussion focuses on calculating the height of an isosceles triangle ABC with given coordinates and dimensions. The triangle has equal sides AB and AC, a base BC of 112, and specific points D and E defined on AC and height line AH, respectively. Two methods are presented for finding the height AH, both leading to quartic equations, with the first method yielding a height of 63 and the second method resulting in a height of 105. Participants express a desire for a simpler solution despite the complexity of the calculations involved. The discussion highlights the challenges of solving geometric problems using algebraic methods.
Wilmer
Messages
303
Reaction score
0
Code:
                    A

              (51)
                                      
           D
                          
                    E
     
                  (42)        

C        (56)       H       (56)       B
Isosceles triangle ABC, AB = AC, base BC = 112.
D is on AC: line BD crosses height line AH at E.
Results in AD = 51 and EH = 42.
What is the length of height line AH?
 
Mathematics news on Phys.org
Wilmer said:
Code:
                    A

              (51)
                                      
           D
                          
                    E
     
                  (42)        

C        (56)       H       (56)       B
Isosceles triangle ABC, AB = AC, base BC = 112.
D is on AC: line BD crosses height line AH at E.
Results in AD = 51 and EH = 42.
What is the length of height line AH?

Hi wilmer, :)

Let, \(AE=x\mbox{ and }\angle ADE=\theta\). Using the Pythagorean law for triangle \(ACH\) we get,

\[CD=\sqrt{(x+42)^2+56^2}-51~~~~~~~~(1)\]

Using the law of sines on the triangle \(ADE\) you will get,

\[\sin\theta=\frac{56x}{3570}~~~~~~~~~~~(2)\]

Using the law of sines on the triangle \(BCD\) and using (1) and (2) you will get,

\[x\left(\sqrt{(x+42)^2+56^2}-51\right)=4284+51x\]

Squaring this equation will give you a Quartic equation which has only one positive real solution. I used Maxima to get the answer,

\[x=63\]

This method may not be the most economical way of doing this problem and I would be delighted to see a more elegant method. :)

Kind Regards,
Sudharaka.
 
Thanks, Mr, Sud; I agree; but you've been of no help (Smile)
I had solved it (also with a darn Quartic!) and was sneakily trying
to see if someone could come up with something "simpler".

Since I hate using SIN or COS, I placed CB on x-axis with C at origin;
let h = AH, so A(56,h).

Letting (x,y) = D's coordinates, I used following equations:
BD's y-intercept is clearly 84; hence BD's equation is: y = (-3/4)x + 84
AC's equation is easier still, with points (0,0) and (56,h) : y = (h/56)x

So I needed to solve:
(56 - x)^2 + (h - y)^2 = 51^2

Getting x and y in terms of h:
x = 4704 / (h + 42)
y = 84h / (h + 42)

And that leads to MY(!) quartic:
h^4 - 84h^3 + 2299h^2 - 481908h + 943740 = 0 (hope it's better than yours)(Thinking)
Which has h = 105 as only "valid" solution (so AE = 63)

And that checks out ok. Makes the equal sides AB and AC = 119 ; also DE = 30.

Surprising to me that this is not easier, with right triangles all over the place!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Back
Top