(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Calculate the moments of Inertia I[itex]_{1}[/itex], I[itex]_{2}[/itex], I[itex]_{3}[/itex] for a homogenous sphere

2. Relevant equations

I[itex]_{jk}[/itex]=[itex]\int[/itex]x[itex]^{2}_{l}[/itex][itex]\delta[/itex][itex]_{ik}[/itex]-x[itex]_{i}[/itex]x[itex]_{k}[/itex]dV

3. The attempt at a solution

For I[itex]_{x}[/itex] i set up the equation using the above equation in cartesian coordinates and then i switched into polar coordinates and i get the following integral

[itex]\rho[/itex][itex]\int[/itex][itex]\int[/itex][itex]\int[/itex](r[itex]^{2}[/itex]-rsin([itex]\vartheta[/itex])cos([itex]\phi[/itex]))r[itex]^{2}[/itex]sin([itex]\vartheta[/itex])d[itex]\phi[/itex]d[itex]\vartheta[/itex]dr

with 0[itex]\leq[/itex]r[itex]\leq[/itex]R, 0[itex]\leq[/itex][itex]\phi[/itex][itex]\leq[/itex]2[itex]\pi[/itex], and 0[itex]\leq[/itex][itex]\vartheta[/itex][itex]\leq[/itex][itex]pi[/itex]

when i solve this integral i get I=[itex]\rho[/itex][itex]\frac{4}{5}[/itex][itex]\pi[/itex]R[itex]^{2}[/itex] and then setting [itex]\rho[/itex]= [itex]\frac{M}{4/3\piR^{3}

}[/itex]

so after simplifying i end up with I=[itex]\frac{3}{5}[/itex]MR[itex]^{2}[/itex]

But the answer i believe is [itex]\frac{2}{5}[/itex]MR[itex]^{2}[/itex] , so i dont really know where is went wrong.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Calculating the Inertia Tensor of a Homogeneous Sphere

**Physics Forums | Science Articles, Homework Help, Discussion**