Calculating the integrated Beta dose in dense materials (radiolysis)

Click For Summary
SUMMARY

This discussion focuses on calculating the integrated Beta dose from Co-60 and Cs-137 in plastic materials using Monte-Carlo methods with SCALE. The average Beta energy for Co-60 is approximately 0.31 MeV, and the conversion factor from MeV to Joules is 1.6e-13 J/MeV. The formula proposed for calculating the instant contribution to deposited dose in Gy (J/kg) per second from Co-60 Beta emissions is E*C*I/m, where I is the intensity in Bq and m is the mass. Additionally, while Bremsstrahlung photons contribute to the dose, their impact is considered minor.

PREREQUISITES
  • Understanding of Monte-Carlo methods for radiation dose calculation
  • Knowledge of radiation types, specifically Beta emissions from Co-60 and Cs-137
  • Familiarity with energy conversion from MeV to Joules
  • Basic principles of radiological dose measurement in Gy (J/kg)
NEXT STEPS
  • Research the calculation of Bremsstrahlung contributions in radiation dose assessments
  • Explore advanced Monte-Carlo simulation techniques for radiation transport
  • Study the decay chains and energy emissions of Co-60 and Cs-137
  • Investigate the effects of varying plastic densities on radiation absorption
USEFUL FOR

Radiation physicists, health physicists, and professionals involved in radiation safety and dose assessment in materials containing radioactive isotopes.

solpete
Messages
1
Reaction score
0
TL;DR
I need to calculate the Beta dose deposited in plastic. Source is Co-60 or Cs-137. The question is relevant for radiolysis/degradation of plastic materials in a repository.
I have plastic which contains large amounts of Co-60 and Cs-137. I have already calculated the integrated (50k years) deposited dose from the gamma radiation using Monte-Carlo methods (SCALE).

I am now interested in the contribution to deposited dose from the Beta emissions.
-I am assuming that all Beta is stopped in the plastic itself.
-For Co-60, the average Beta energy is about E=0,31*(1/3) Mev.
-The conversion factor from MeV to Joules is C=1.6e-13 J/MeV.

Would the instant contribution to deposited dose in Gy (J/kg) per second from Co-60 Beta be:
E*C*I/m,

where I is the intensity in Bq and m is the mass?

Side note: Bremsstrahlung photons will also contribute to dose, but I have a feeling that this contribution is minor.

Peter, Phd
 
Last edited:
Engineering news on Phys.org
One would calculate the energy emitted from the 60Co and 137Cs. In one's problem, one wishes to calculate the dose in the plastic, so one must determine the mass of the radionuclides and then multiply by the ratio of mass of radionuclide(s) to the mass of the plastic.
 
  • Informative
Likes   Reactions: anorlunda

Similar threads

Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K