MHB Calculating the Length of an Angle Bisector: Is My Solution Correct?

  • Thread starter Thread starter divisor
  • Start date Start date
  • Tags Tags
    Angle Length
divisor
Messages
2
Reaction score
0
How to find the length of an angle bisector ($$BK$$) in a triangle $$A(1;4), B(7;8), C(9;2)$$.

I calc $$BK$$:
[math]\frac{x-7}{\frac{1+\frac{\sqrt{13}}{\sqrt{10}} \cdot 9}{1+\frac{\sqrt{13}}{\sqrt{10}}} - 7} - \frac{y-8}{\frac{4+\frac{\sqrt{13}}{\sqrt{10}} \cdot 2}{1+\frac{\sqrt{13}}{\sqrt{10}}} - 8}=0[/math]

Is it right?
 
Mathematics news on Phys.org
Welcome, divisor! (Wave)

Is the equation you wrote supposed to be the equation of line containing $BK$? I haven't checked it for correctness, but you usually find lengths in the coordinate plane using the distance formula. Since $BK$ is an angle bisector of $\triangle ABC$, the angle bisector theorem gives $\frac{AK}{KC} = \frac{AB}{AC}$. Find $AB$ and $AC$ using the distance formula. Next, use the equation in Stewart's theorem to solve for $BK$.
 
Euge, thank you. I want to check my solution by Stewart's theorem.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top