I Calculating vapor pressure from Boltzmann distribution?

AI Thread Summary
The Boltzmann distribution cannot be used to calculate the fraction of particles in liquid and gas states because it assumes a fixed energy difference between states, which does not account for the variable amounts of liquid and vapor in equilibrium. In a liquid-vapor system, multiple configurations can exist at the same temperature and pressure, leading to different ratios of liquid to gas that are not captured by the Boltzmann equation. Conversely, in an isothermal atmosphere, the potential energy change with height is consistent and allows for a clear application of the Boltzmann distribution to determine particle fractions. The key difference lies in the nature of equilibrium in the two scenarios: liquid-vapor equilibrium involves variable phase amounts, while height in an atmosphere provides a uniform gradient. Thus, the Boltzmann distribution is applicable in one case but not the other due to these fundamental differences in system behavior.
chingel
Messages
307
Reaction score
23
Why can't we use the Boltzmann distribution to calculate what fraction of particles are in the liquid and gas states?

If in liquid state the potential energy is smaller by amount ##L## per mole lets say, the using the Boltzmann distribution (##r\propto \exp(-\Delta E/RT)##) the fraction of particles in the liquid state would be $$r_l = \frac{\exp(L/RT)}{1+\exp(L/RT)}$$ and for gas $$r_g = \frac{1}{1+\exp(L/RT)}$$
However this is not true since I can actually have any amount of water and vapor in equilibrium at some given temperature, e.g. half the container full of water or only quarter full of water (the remaining is vapor), since as long as the pressure is the saturated vapor pressure it should be in equilibrium. Why doesn't the Boltzmann distribution apply in this case?

Because in a different example, to calculate how does the density of air change with height in an isothermal atmosphere, I can use the potential energy per mole ##\mu gh## and the Boltzmann distribution to get that the fraction of particles at height ##h## is proportional to ##\exp(-\mu gh/RT)##, which is correct. Why does it work here, but not in the previous case?
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top