I Calculating vapor pressure from Boltzmann distribution?

AI Thread Summary
The Boltzmann distribution cannot be used to calculate the fraction of particles in liquid and gas states because it assumes a fixed energy difference between states, which does not account for the variable amounts of liquid and vapor in equilibrium. In a liquid-vapor system, multiple configurations can exist at the same temperature and pressure, leading to different ratios of liquid to gas that are not captured by the Boltzmann equation. Conversely, in an isothermal atmosphere, the potential energy change with height is consistent and allows for a clear application of the Boltzmann distribution to determine particle fractions. The key difference lies in the nature of equilibrium in the two scenarios: liquid-vapor equilibrium involves variable phase amounts, while height in an atmosphere provides a uniform gradient. Thus, the Boltzmann distribution is applicable in one case but not the other due to these fundamental differences in system behavior.
chingel
Messages
307
Reaction score
23
Why can't we use the Boltzmann distribution to calculate what fraction of particles are in the liquid and gas states?

If in liquid state the potential energy is smaller by amount ##L## per mole lets say, the using the Boltzmann distribution (##r\propto \exp(-\Delta E/RT)##) the fraction of particles in the liquid state would be $$r_l = \frac{\exp(L/RT)}{1+\exp(L/RT)}$$ and for gas $$r_g = \frac{1}{1+\exp(L/RT)}$$
However this is not true since I can actually have any amount of water and vapor in equilibrium at some given temperature, e.g. half the container full of water or only quarter full of water (the remaining is vapor), since as long as the pressure is the saturated vapor pressure it should be in equilibrium. Why doesn't the Boltzmann distribution apply in this case?

Because in a different example, to calculate how does the density of air change with height in an isothermal atmosphere, I can use the potential energy per mole ##\mu gh## and the Boltzmann distribution to get that the fraction of particles at height ##h## is proportional to ##\exp(-\mu gh/RT)##, which is correct. Why does it work here, but not in the previous case?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top