• Support PF! Buy your school textbooks, materials and every day products Here!

Calculation of magnetic field from electric field

  • Thread starter maggas
  • Start date
  • #1
2
0

Homework Statement


In this tute on EM waves, we were given the Electric Field

[tex] \textbf{E}=\textbf{E}_0\text{exp}(i(\textbf{k}\cdot\textbf{x} - \omega t))[/tex]

which after a fair bit of algebra yields the magnetic field

[tex] \textbf{B}=(\hat{\textbf{k}}\times\textbf{E})/c[/tex]

Similarly the inverse problem I had to solve, given the Magnetic Field

[tex] \textbf{B}=\textbf{B}_0\text{exp}(i(\textbf{k}\cdot\textbf{x} - \omega t))[/tex]

yields [tex] \textbf{E}=c\textbf{B}\times\hat{\textbf{k}}[/tex]

The tute also gives a hint that this can be solved in a few lines, without heavy algebra, using Lagrange's formula.

Homework Equations



Maxwell's Equations

Lagrange's formula: [tex]\textbf{a}\times(\textbf{b}\times\textbf{c}) = (\textbf{a}\cdot\textbf{c})\textbf{b} - (\textbf{a}\cdot\textbf{b})\textbf{c}[/tex]

The Attempt at a Solution



I can only solve the question the long winded way, and would like to know how it can be solved using this identity rather than equating many equations to solve coefficients!

EDIT: Forgot to mention only using simplified Maxwell's Equations, i.e. Gauss' = 0 and Ampere's has no J term
 
Last edited:

Answers and Replies

  • #2
2
0
I've managed to solve this myself, thanks for the help :cool:

[tex]\textbf{B}=(\hat{\textbf{k}}\times\textbf{E})/c[/tex]
[tex]c\textbf{B}=(\hat{\textbf{k}}\times\textbf{E})[/tex]

Then using Lagrange Triple Product
[tex]\hat{\textbf{k}}\times(\hat{\textbf{k}}\times\textbf{E}) = (\hat{\textbf{k}}\cdot\textbf{E})\hat{\textbf{k}} - (\hat{\textbf{k}}\cdot\hat{\textbf{k}})\textbf{E}[/tex]
[tex]\hat{\textbf{k}}\times c\textbf{B} = - \textbf{E}[/tex]

Therefore
[tex]\textbf{E} = c\textbf{B} \times \hat{\textbf{k}}[/tex]
//as required
 
Top