Calculus II - Trigonometric Integrals - Evaluate Integral tan(x)^5*sec(x)^4 dx

  • Thread starter GreenPrint
  • Start date
  • #1
1,196
0

Homework Statement


Hi,
I'm trying to solve this problem and guess I'm doing something wrong.

Evaluate Integral tan(x)^5*sec(x)^4 dx

Homework Equations



integral tan(x) dx = ln(|sec(x)|)

integral tan(x)^n dx = tan(x)^(n-1)/(n-1) - integral tan(x)^(n-1) dx

tan(x)^2+1=sec(x)^2

The Attempt at a Solution



My Answer
Integral tan(x)^5*sec(x)^4 dx = 1/8*tan(x)^8 + 1/6*tan(x)^6 + 1/2*tan(x)^2 + ln(|sec(x)|)+c

I don't see what I'm doing wrong...
You can see my work attached. Thanks in advance for any assistance you can provide! Don't forget you can click on the window that pops up after clicking attachments to open the image in a new tab to view it at a larger scale.
 

Attachments

Last edited:

Answers and Replies

  • #2
209
0
∫ tan5(x) sec4(x) dx
= ∫ tan5(x) (tan2(x)+1) sec2(x) dx
= ∫ [tan7(x) + tan5(x)] sec2(x) dx
 
  • #3
1,196
0
∫ tan5(x) sec4(x) dx
= ∫ tan5(x) (tan2(x)+1) sec2(x) dx
= ∫ [tan7(x) + tan5(x)] sec2(x) dx
= ∫ [tan7(x) + tan5(x)] (tan2(x)+1) dx
= ∫ [tan9(x) + tan7(x)+tan7(x)+tan5(x)] dx
= ∫ [tan9(x) + 2tan7(x)+tan5(x)] dx
is this not correct?
 
  • #4
209
0
Why would you do that when d/dx tan(x) = sec2(x)?
 
  • #5
1,196
0
I didn't think of making the substitution at the time <_< it would of made the problem much easier @_@ I should still be able to obtain the correct answer though, yes? I find it odd that I don't get the right answer

as you can see in my work
∫ tan5(x) sec4(x) dx
= ∫ tan5(x) (tan2(x)+1) sec2(x) dx
= ∫ [tan7(x) + tan5(x)] sec2(x) dx
= ∫ [tan7(x) + tan5(x)] (tan2(x)+1) dx
= ∫ [tan9(x) + tan7(x)+tan7(x)+tan5(x)] dx
= ∫ [tan9(x) + 2tan7(x)+tan5(x)] dx

one i get here i evaluated each integral separately using
integral tan(x)^n dx = tan(x)^(n-1)/(n-1) - integral tan(x)^(n-1) dx
I should be able to get the correct answer and i don't think my answer
1/8*tan(x)^8 + 1/6*tan(x)^6 + 1/2*tan(x)^2 + ln(|sec(x)|)+c
is correct for whatever strange reason when i can't find a error in my work at all
 
  • #6
209
0
I should be able to get the correct answer and i don't think my answer
1/8*tan(x)^8 + 1/6*tan(x)^6 + 1/2*tan(x)^2 + ln(|sec(x)|)+c
is correct
It's not correct. The bolded terms are extraneous. Here's your work:

∫ tan5(x) sec4(x) dx
= ∫ tan5(x) (tan2(x)+1)2 dx
= ∫ tan5(x) (tan2(x)+1)2 dx
= ∫ tan5(x) (tan4(x)+2 tan2(x) +1) dx
= ∫ [tan9(x) + 2 tan7(x)+tan5(x)] dx

Let's evaluate each individually, using your formula. I'm not even sure whether or not your formula is true, but let's assume that it is.

∫ tann(x) dx = tann-1(x)/(n-1) - ∫ tann-1(x) dx
∫ [tan9(x) dx = tan8(x)/8 - ∫ tan8(x) dx
∫ [tan8(x) dx = tan7(x)/7 - ∫ tan7(x) dx
∫ [tan7(x) dx = tan6(x)/6 - ∫ tan6(x) dx
∫ [tan6(x) dx = tan5(x)/5 - ∫ tan5(x) dx

The problem here is that you used your own formula incorrectly. Using the formula correctly:

∫ [tan9(x) + 2 tan7(x)+tan5(x)] dx
= tan8(x)/8 - ∫ tan8(x) dx + ∫ [2 tan7(x)+tan5(x)] dx
= tan8(x)/8 - tan7(x)/7 + ∫ tan7(x) dx + ∫ [2 tan7(x)+tan5(x)] dx
= tan8(x)/8 - tan7(x)/7 + ∫ [3 tan7(x)+tan5(x)] dx
= tan8(x)/8 - tan7(x)/7 + 3 [tan6(x)/6 - ∫ tan6(x) dx] + ∫ tan5(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 [tan6(x)/6 - tan5(x)/5 + ∫ tan5(x) dx] + ∫ tan5(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 tan6(x)/6 - 3 tan5(x)/5 + 4 ∫ tan5(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 tan6(x)/6 - 3 tan5(x)/5 + 4 tan4(x)/4 - 4 ∫ tan4(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 tan6(x)/6 - 3 tan5(x)/5 + 4 tan4(x)/4 - 4 tan3(x)/3 + 4 ∫ tan3(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 tan6(x)/6 - 3 tan5(x)/5 + 4 tan4(x)/4 - 4 tan3(x)/3 + 4 tan2(x)/2 - 4 ∫ tan2(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 tan6(x)/6 - 3 tan5(x)/5 + 4 tan4(x)/4 - 4 tan3(x)/3 + 4 tan2(x)/2 - 4 tan(x) - 4 ∫ tan(x) dx
= tan8(x)/8 - tan7(x)/7 + 3 tan6(x)/6 - 3 tan5(x)/5 + 4 tan4(x)/4 - 4 tan3(x)/3 + 4 tan2(x)/2 - 4 tan(x) + 4 log|cos(x)| +C

It seems like something is seriously wrong with your formula.
 
Last edited:
  • #7
1,196
0
I thought the formula was correct, see attachment
ah yes the correct formula is
∫ tann(x) dx = tann-1(x)/(n-1) - ∫ tann-2(x) dx
which although i wrote the wrong formula in my posts i still used this one in my work and the correct

I don't see how you get rid of terms... isn't this correct

∫ tan9(x) dx = tan8(x)/8 - ∫ tan7(x) dx
= tan8(x)/8 - tan6(x)/6 +∫ tan5(x) dx
= tan8(x)/8 - tan6(x)/6 + tan4(x)/4 - ∫ tan3(x) dx
= tan8(x)/8 - tan6(x)/6 + tan4(x)/4 - tan2(x)/2 + ∫ tan(x) dx
= tan8(x)/8 - tan6(x)/6 + tan4(x)/4 - tan2(x)/2 + ln(|sec(x)|)

2∫ tan7(x) = 2*tan6(x)/6 - 2 ∫ tan5(x) dx
= tan6(x)/3 - 2*tan4(x)/4 + 2 ∫ tan3(x) dx
= tan6(x)/3 - tan4(x)/2 + 2*tan2(x)/2 - 2 ∫ tan(x) dx
= tan6(x)/3 - tan4(x)/2 + tan2(x) - 2 ln(|sec(x)|)

∫ tan5(x) dx = tan4(x)/4 - ∫ tan3(x) dx
= tan4(x)/4 - tan2(x)/2 + ∫ tan(x) dx
= tan4(x)/4 - tan2(x)/2 + ln(|sec(x)|)

∫ [tan9(x) + 2 tan7(x)+tan5(x)] dx

= tan8(x)/8 - tan6(x)/6 + tan4(x)/4 - tan2(x)/2 + ln(|sec(x)|) + tan6(x)/3 - tan4(x)/2 + tan2(x) - 2 ln(|sec(x)|) + tan4(x)/4 - tan2(x)/2 + ln(|sec(x)|)

= tan8(x)/8 - tan6(x)/6 + tan6(x)/3 + tan4(x)/4 - tan4(x)/2 + tan4(x)/4 - tan2(x)/2 + tan2(x) - tan2(x)/2 + ln(|sec(x)|) - 2 ln(|sec(x)|) + ln(|sec(x)|)


= tan8(x)/8 + tan6(x)/6

hmm interesting
 

Attachments

Related Threads on Calculus II - Trigonometric Integrals - Evaluate Integral tan(x)^5*sec(x)^4 dx

  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
2
Views
4K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
4
Views
10K
  • Last Post
Replies
2
Views
40K
  • Last Post
Replies
8
Views
2K
Replies
9
Views
885
Top