1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Calculus - Taylor Expansion, maybe. Not sure how to simplify.

  1. Feb 19, 2012 #1
    I am attempting to complete a problem for a problem set and am having difficulty simplifying an expression; any help would be greatly appreciated!

    The question is a physics question which attempts to derive an equation for the temperature within a planet as a function of depth assuming spherical co-ordinates. "Conside a thin spherical shell whose inner boundary has radius r and outer boundary had radius r + ∂r. The heat flux into the shell from the inner boundary is q[itex]_{r}[/itex](r) and the heat flux out of the shell at the top boundary is q[itex]_{r}[/itex](r + ∂r). The energy produced by radioactivity in the shell is [itex]\rho\rho[/itex]HV where V is the volume of the spherical shell, H is the heat generation rate per unit mass and [itex]\rho[/itex] is the density."

    To determine the volume of the shell V I have used:

    V = V(r + ∂r) - V(r)

    Using the fact that ∂r [itex]\rightarrow[/itex] 0 I have found:

    V = 4[itex]\pi[/itex]r[itex]^{2}[/itex]∂r + 4[itex]\pi[/itex]r ∂r[itex]^{2}[/itex]

    Is this a reasonable time to use the fact that ∂r [itex]\rightarrow[/itex] 0? Is the second term in my expression for V negligible?


    The primary question I have is whether or not there is a way to simplify q[itex]_{r}[/itex](r + ∂r); I feel like there is - and I feel like it might have to do with a Taylor expansion, but I haven't been able to figure it out - all the links I find when I do a google search are either too simple or too complex. Any help would be greatly appreciated!

    (After I do this I have to write an expression that says the sum of the heat going in, the heat leaving and the heat produced inside the shell equals 0 [by assuming in is either positive or negative and out is the opposite sign of in).

    Again, any help would be greatly appreciated!
     
  2. jcsd
  3. Feb 19, 2012 #2

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I will use the notation ##\Delta V = V(r+\Delta r)-V(r)= 4\pi r^2\Delta r + 4\pi r (\Delta r)^2##. This is a consequence of a general property of differentiable functions. If ##f(x)## is differentiable at ##x##, then$$
    f'(x)-\frac{f(x+h)-f(x)}{h}\rightarrow 0\hbox{ if }h\rightarrow 0$$so we might use the notation$$f'(x)-\frac{f(x+h)-f(x)}{h}=o(h)$$where ##o(h)## represents a term that goes to 0 as h does. $$hf'(x) -(f(x+h)-f(x)) = ho(h)$$ $$
    \Delta f = hf'(x) -ho(h)$$That last term is h times a term that goes to zero with h, so is a higher order zero than ##hf'(x)##. That is why for ##h## small the second term is neglected and you say approximately ##\Delta f = hf'(x)##. Your example is a special case where the variable is ##r## instead of ##x## and $$
    f(r)=\frac 4 3 \pi r^3$$the volume of a sphere.
     
  4. Feb 20, 2012 #3
    Thank you very much!

    As to my second question - is there any way to write q[itex]_{r}[/itex](r + ∂r) another way so that I can simplify my equation when I do an energy balance? That is, what does q[itex]_{r}[/itex](r + ∂r) equal mathematically? (I don't need any kind of really deep proof, just some kind of evidence so I can understand how you get to what it equals).
     
  5. Feb 20, 2012 #4
    Alright, so I've made some progress.

    Using the following:
    E[itex]_{in}[/itex] = q[itex]_{r}[/itex](r) x A(r) = q[itex]_{r}[/itex](r) x 4[itex]\pi[/itex]r[itex]^{2}[/itex]
    E[itex]_{out}[/itex] = q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) x A(r +[itex]\delta[/itex]r) = q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) x 4[itex]\pi[/itex](r +[itex]\delta[/itex]r)[itex]^{2}[/itex]
    E[itex]_{produced}[/itex] = [itex]\rho[/itex]HV = [itex]\rho[/itex]H4[itex]\pi[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]r

    I have written the following equation:

    E[itex]_{in}[/itex] - E[itex]_{out}[/itex] + E[itex]_{produced}[/itex] = mC[itex]\Delta[/itex]T = [itex]\rho[/itex]VC[itex]\Delta[/itex]T = [itex]\rho[/itex]4[itex]\pi[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]r C[itex]\Delta[/itex]T (this follows from discussion in class; its part of thermal physics).

    I can write out the formula (it kinda sucks):

    E[itex]_{in}[/itex] - E[itex]_{out}[/itex] + E[itex]_{produced}[/itex] = 4[itex]\pi[/itex]r[itex]^{2}[/itex]q[itex]_{r}[/itex](r) - 4[itex]\pi[/itex](r +[itex]\delta[/itex]r)[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + 4[itex]\pi[/itex][itex]\rho[/itex]Hr[itex]^{2}[/itex][itex]\delta[/itex]r = [itex]\rho[/itex]4[itex]\pi[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]rC[itex]\frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]

    4[itex]\pi[/itex]r[itex]^{2}[/itex]q[itex]_{r}[/itex](r) - 4[itex]\pi[/itex](r[itex]^{2}[/itex] + 2r[itex]\delta[/itex]r + ([itex]\delta[/itex]r)[itex]^{2}[/itex])q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + 4[itex]\pi[/itex][itex]\rho[/itex]Hr[itex]^{2}[/itex][itex]\delta[/itex]r = [itex]\rho[/itex]4[itex]\pi[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]rC[itex]\frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]

    4[itex]\pi[/itex]r[itex]^{2}[/itex]q[itex]_{r}[/itex](r) - (4[itex]\pi[/itex]r[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + 8[itex]\pi[/itex]r[itex]\delta[/itex]rq[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + 4[itex]\pi[/itex]([itex]\delta[/itex]r)[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r)) + 4[itex]\pi[/itex][itex]\rho[/itex]Hr[itex]^{2}[/itex][itex]\delta[/itex]r = [itex]\rho[/itex]4[itex]\pi[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]rC[itex]\frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]


    4[itex]\pi[/itex]r[itex]^{2}[/itex]q[itex]_{r}[/itex](r) - 4[itex]\pi[/itex]r[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) - 8[itex]\pi[/itex]r[itex]\delta[/itex]rq[itex]_{r}[/itex](r +[itex]\delta[/itex]r) - 4[itex]\pi[/itex]([itex]\delta[/itex]r)[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + 4[itex]\pi[/itex][itex]\rho[/itex]Hr[itex]^{2}[/itex][itex]\delta[/itex]r = [itex]\rho[/itex]4[itex]\pi[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]rC[itex]\frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]

    r[itex]^{2}[/itex]q[itex]_{r}[/itex](r) - r[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) - 2r[itex]\delta[/itex]rq[itex]_{r}[/itex](r +[itex]\delta[/itex]r) - ([itex]\delta[/itex]r)[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + [itex]\rho[/itex]Hr[itex]^{2}[/itex][itex]\delta[/itex]r = [itex]\rho[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]rC[itex]\frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]

    - (r[itex]^{2}[/itex](q[itex]_{r}[/itex](r +[itex]\delta[/itex]r) -q[itex]_{r}[/itex](r)) + 2r[itex]\delta[/itex]rq[itex]_{r}[/itex](r +[itex]\delta[/itex]r) + ([itex]\delta[/itex]r)[itex]^{2}[/itex]q[itex]_{r}[/itex](r +[itex]\delta[/itex]r)) + [itex]\rho[/itex]Hr[itex]^{2}[/itex][itex]\delta[/itex]r = [itex]\rho[/itex]r[itex]^{2}[/itex][itex]\delta[/itex]rC[itex]\frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]

    So far I have expanded a perfect square, divided through by 4[itex]\pi[/itex] and factored to simplify somewhat. (My solution on paper looks a bit nicer, but I'm not very good at coding this so that it looks proper so I apologize if it looks really messy). Next, I divide through by what is left of the volume term, r[itex]^{2}[/itex][itex]\delta[/itex]r. It's hard for me to get fractions to appear nicely on here, so I'm going to skip a step (the step in which I would show everything in both the numerator and denominator) and then just show you what I'm left with:

    [itex] -(\frac{r^{2}(q_{r}(r + \delta r) -q_{r}(r)}{r^{2} \delta r} + \frac{2r\delta rq_{r}(r + \delta r)}{r^{2} \delta r} + \frac{(\delta r)^{2}q_{r}(r +\delta r)}{r^{2} \delta r}) + \frac{\rho Hr^{2}\delta r}{r^{2} \delta r} = \frac {\rho r^{2}\delta rC \frac{(T(t + \delta t) - T(t))}{\delta t}}{r^{2} \delta r}[/itex]

    [itex] -(\frac{(q_{r}(r + \delta r) -q_{r}(r)}{\delta r} + \frac{2q_{r}(r + \delta r)}{r} + \frac{\delta rq_{r}(r +\delta r)}{r^{2}}) + \rho H = \rho C \frac{(T(t + \delta t) - T(t))}{\delta t}[/itex]

    Next we take the limit as [itex]\delta r[/itex] and [itex]\delta t[/itex] approach 0 - then I get the right answer (as I was typing this I found I had missed a 2 going from one step to the next which was throwing me off, but I was so close to finishing typing this up that I decided I might as well continue). Anyways, disregard my previous questions; if you find anything wrong with this please let me know!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Calculus - Taylor Expansion, maybe. Not sure how to simplify.
  1. How to simplify this (Replies: 12)

  2. How do I simplify this? (Replies: 10)

Loading...