- #1
- 53
- 8
Homework Statement
Find the centre of mass of a uniform hemispherical shell of inner radius a and outer radius b.
Homework Equations
##r_{CoM} = \sum \frac{m\vec{r}}{m}##
The Attempt at a Solution
Using ##x(r,\theta,\phi)## for coordinates,
$$x_{CoM}=\frac{\int_{0}^{\frac{\pi}{2}}\int_{0}^{2\pi}\int_{a}^{b} \vec{x}\rho r^2\sin{\theta}drd\theta d\phi}{\int_{0}^{\frac{\pi}{2}}\int_{0}^{2\pi}\int_{a}^{b} \rho r^2\sin{\theta}drd\theta d\phi}$$
My vector calculus is rusty, how do I handle the ##\vec{x}## in this integral?