Greetings !
Originally posted by schwarzchildradius
all right then, I have a question for you drag: why can't
we accumulate enough ions in one place in a Tokamak to
start sustainable reaction (or can we) ? The idea though
is that instead of heating the fuel, you just accelerate
it enough that the force from circular motion, (by default acceleration,) is greater than the coulomb repulive force etc.
Pure numbers. I think your mathematical skills
by far exceed mine schwarz so I'm sure you
can easily do this and see the problem.
(Basicly, if we need to overcome say a few KeV
than we're talking about velocities equivalent
to about 10^6 m/sec which is pretty high for
protons and hydrogen isotopes.)
Circuilar accelerators are used because you can
accelerate the particles and then maintain the
velocity with relativly little more energy input
over a fairly long time period, thus increasing
the likeliness of the reaction and the total
energy output to input ratio.
There are basicly 3 ways (as you may know) to
contain a sustained fusion reaction:
1. Gravitational.
2. Electromagnetic.
3. Enertial.
Of course, in this case we are not talking about
a direct self-sustaining reaction. However, the
same methods are also required to enitiate it.
BTW, an interesting thing that Warren(chroot), I
believe, said in a different thread - quantum
tunneling plays a significant part in a star's
fusion process. Thus, had there been no quantum
tunnelling the star would have to be more massive
to enitiate and contain the reaction. (I have not
confirmed this personally and he did not answer
my question back then so I can't say how much
is "significant".)
So, theoreticly, if we could increase the chances
of the relevant particles to tunnel and fuse
we could increase the output this way too. But,
if I'm not mistaken there is currently no way to
do this and QM does not allow this.
Live long and prosper.