MHB Can a Primitive Root of p Also Be a Primitive Root of p^2?

Click For Summary
If \( x \) is a primitive root of an odd prime \( p \) and \( x^{p-1} \) is not congruent to 1 modulo \( p^2 \), then \( x \) is also a primitive root of \( p^2 \). The proof utilizes Fermat's Little Theorem, establishing that \( x^{p-1} \equiv 1 \pmod{p} \) and leads to the conclusion that the order of \( x \) modulo \( p^2 \) must be \( n = p(p-1) \). This is derived from the assumption that \( n \) is a multiple of \( p-1 \) and the conditions set by the congruences. The discussion also touches on the case when \( p = 2 \), noting that the result holds vacuously. Overall, the argument hinges on the properties of orders in modular arithmetic.
Poirot1
Messages
243
Reaction score
0
Show that if $x$ is a primitive root of p, and $x^{p-1}$ is not congruent to 1 mod$p^2$, then x is a primitive root of $p^2$
 
Last edited:
Mathematics news on Phys.org
Re: primitive root challenge

Poirot said:
Show that if $x$ is a primitive root of p, and $x^{p-1}$ is not congruent to 1 mod$p^2$, then x is a primitive root of $p^2$

We assume $p$ is an odd prime.

By Fermat, $x^{p-1}\equiv 1\pmod{p}$.
Thus $x^{p-1}=pk+1$. By hypothesis, $p\not |k$.
Let order of $x$ mod $p^2$ be $n$. Then $x^n\equiv 1\pmod{p}$, therefore $(p-1)|n$ (since order of $x$ mod $p$ is $p-1$).
Write $n=l(p-1)$.
So we have $x^n=(pk+1)^{l}\equiv 1\pmod{p^2}$.
So we have $lpk+1\equiv 1\pmod{p^2}$.
Thus $p|(lk)$.
Since $p$ doesn't divide $k$, we have $p|l$ and now its easy to show that $n=p(p-1)=\varphi(p^2)$ and we are done.
 
Re: primitive root challenge

caffeinemachine said:
So we have $x^n=(pk+1)^{l}\equiv 1\pmod{p^2}$.

So we have $lpk+1\equiv 1\pmod{p^2}$.

What is the logic in this step?
Also, note the result is vacuously true when p=2.
 
Re: primitive root challenge

Poirot said:
What is the logic in this step?
Also, note the result is vacuously true when p=2.
Hello Poirot,

By Binomial expansion we have $(1+pk)^l=1+pkl+p^2t$ for some integer $t$.
Now it should be clear I believe.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 24 ·
Replies
24
Views
820
  • · Replies 1 ·
Replies
1
Views
1K