MHB Can a Primitive Root of p Also Be a Primitive Root of p^2?

AI Thread Summary
If \( x \) is a primitive root of an odd prime \( p \) and \( x^{p-1} \) is not congruent to 1 modulo \( p^2 \), then \( x \) is also a primitive root of \( p^2 \). The proof utilizes Fermat's Little Theorem, establishing that \( x^{p-1} \equiv 1 \pmod{p} \) and leads to the conclusion that the order of \( x \) modulo \( p^2 \) must be \( n = p(p-1) \). This is derived from the assumption that \( n \) is a multiple of \( p-1 \) and the conditions set by the congruences. The discussion also touches on the case when \( p = 2 \), noting that the result holds vacuously. Overall, the argument hinges on the properties of orders in modular arithmetic.
Poirot1
Messages
243
Reaction score
0
Show that if $x$ is a primitive root of p, and $x^{p-1}$ is not congruent to 1 mod$p^2$, then x is a primitive root of $p^2$
 
Last edited:
Mathematics news on Phys.org
Re: primitive root challenge

Poirot said:
Show that if $x$ is a primitive root of p, and $x^{p-1}$ is not congruent to 1 mod$p^2$, then x is a primitive root of $p^2$

We assume $p$ is an odd prime.

By Fermat, $x^{p-1}\equiv 1\pmod{p}$.
Thus $x^{p-1}=pk+1$. By hypothesis, $p\not |k$.
Let order of $x$ mod $p^2$ be $n$. Then $x^n\equiv 1\pmod{p}$, therefore $(p-1)|n$ (since order of $x$ mod $p$ is $p-1$).
Write $n=l(p-1)$.
So we have $x^n=(pk+1)^{l}\equiv 1\pmod{p^2}$.
So we have $lpk+1\equiv 1\pmod{p^2}$.
Thus $p|(lk)$.
Since $p$ doesn't divide $k$, we have $p|l$ and now its easy to show that $n=p(p-1)=\varphi(p^2)$ and we are done.
 
Re: primitive root challenge

caffeinemachine said:
So we have $x^n=(pk+1)^{l}\equiv 1\pmod{p^2}$.

So we have $lpk+1\equiv 1\pmod{p^2}$.

What is the logic in this step?
Also, note the result is vacuously true when p=2.
 
Re: primitive root challenge

Poirot said:
What is the logic in this step?
Also, note the result is vacuously true when p=2.
Hello Poirot,

By Binomial expansion we have $(1+pk)^l=1+pkl+p^2t$ for some integer $t$.
Now it should be clear I believe.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top