Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Can a second earthing conductor drive the fault current back?

  1. Apr 26, 2014 #1
    i have a TT earthing system and to decrease the resistance of the system i'm connecting the rods in parallel. i have the earthing conductor connected but as a mean of security, i'm thinking of connecting a second earthing conductor from the rod to the main earth bar. Does this cause a any problem? will the fault current go back to my system??
     

    Attached Files:

  2. jcsd
  3. Apr 26, 2014 #2

    nsaspook

    User Avatar
    Science Advisor

    I don't see a technical problem with redundant wiring 'if' they are on the same earthing bar and follow the same path to the ground rod connection for normal fault currents. It seems like overkill if you've used approved connection methods for the single wire and have a inspection cycle for checking ground resistance and ground connections.

    I have no idea about what your local code requirements would be for this service.
     
    Last edited: Apr 26, 2014
  4. Apr 27, 2014 #3

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    no idea what's your installation like.

    We had an earthing scheme for the instruments in a power plant that incorporated a really big loop, perhaps seventy five feet across with two ground rods on opposite sides. One day a nearby lightning stroke upset the instruments and caused a trip. We surmised it was induction in that loop, though earth potential drop between the separate ground rods some distance apart couldn't be ruled out. Both would only persist for the duration of the strike.

    Routing your wires together per nsaspook's advice will minimize enclosed area hence magnetic induction.
     
  5. Apr 27, 2014 #4

    AlephZero

    User Avatar
    Science Advisor
    Homework Helper

    The downside to this is creating a scaled up version of an "earth loop," which is a good way to pick up electrical noise and RFI where you don't want it: http://www.jaycar.co.uk/images_uploaded/humloop.pdf [Broken]

    Being struck by lightning is an extreme case!
     
    Last edited by a moderator: May 6, 2017
  6. Apr 27, 2014 #5

    nsaspook

    User Avatar
    Science Advisor

    This is one of the reasons I set the requirement of the same path for the ground wires. If they are very close at both connections and along the path external signals will be common-mode to both wires and not cause loop currents..
     
    Last edited by a moderator: May 6, 2017
  7. Apr 29, 2014 #6
    The second connection will not change any thing.
     

    Attached Files:

  8. Apr 29, 2014 #7

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    except that by adding it you've created a closed loop with one turn. Any magnetic flux enclosed by that loop will cause current to flow around it. That's why you want to keep the area of that loop small by running its wires close together, as nsaspook said earlier.

    Usually there's not a lot of stray magnetic flux floating about. But around big machinery or lightning arrestors one must keep in mind the laws of Faraday and Gauss.
     
  9. Apr 30, 2014 #8

    Borek

    User Avatar

    Staff: Mentor

    Makes me think about step voltage.
     
  10. Apr 30, 2014 #9
    I agree with you,Jim, theoretically. Practically the usual induced voltage will be not more than 1 V.
    For a distance between grounding rods of 3 m[total 10 m connection length] and 10 m grounding cable length - total occupied area of 100 m^2- a conductor close at 0.5 m, running parallel at entire length of 10 m and carrying 1000 A will induced 12.6 V in the loop.
    Usually the area occupied will be not more than 10 m^2 and no conductor carrying 1000 A will be in vicinity of less than 1 m, then the induced voltage will be 0.6 V.
    :shy:
     
  11. Apr 30, 2014 #10

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    Thanks Babadag

    We did a Biot-Savart calculation trying to figure out what had tripped the plant.
    I no longer recall the exact numbers.
    A lightning protection earthing conductor came straight down from the roof and passed maybe twenty five feet from one corner of our instrument grounding loop. I had seen the lightning stroke hit the rods atop plant and estimated it at 30kiloamps , which is not a gigantic stroke but a pretty healthy one. The instruments physically nearest that corner of the loop were the ones that reacted and tripped the plant.
    Would a star grounding system have performed better? Who knows?
    I think that having it earthed on both sides held down the induced voltage, else we'd have tripped the other unit too.


    So as you observe, induction is not much trouble in ordinary circumstances.
    Lightning has di/dt in kiloamps per microsecond , so one ought to consider that when routing lightning protection cables and instrument cables in an industrial setting.

    Our main generator connections carried 20 kiloamps at 60hz. With ten turns on a 0.1m^2 loop i could measure 2 volts ac near them, perhaps a couple meters away. A clamp-on ammeter placed around the handrail above read ~75 amps.

    So we agree - it's not troublesome for 99.5% of the folks out there.
    But it's something to be aware of for that one-in-a-thousand unfortunate event.
     
  12. Apr 30, 2014 #11

    Borek

    User Avatar

    Staff: Mentor

    I can't find any estimates of the step voltages, but if they are high enough to kill, they should be able to trip the plant, don't they?
     
  13. Apr 30, 2014 #12

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    It takes surprisingly little to upset an instrument and cause a partial trip signal.

    We found no damage to any of the instruments involved.
    They operate on a one to five volt signal, derived from a 4-20 milliamp current loop.
    So if , via the earth grounding scheme,
    just a couple volts were induced into a signal line, a trip circuit actuation is in theory possible.
    It's a "two channels out of three must agree" to actually trip the plant
    and the two channels on that side of the control room nearest the strike agreed.

    BiotSavart, long straight wire: B= [itex]\frac{μ_{0}I}{2\pi a}[/itex] , a being distance from the wire


    in center of the loop perhaps 15 meters from lightning rod earthing conductor

    B = [itex]\frac{4\pi\times10^{-7}\times30,000}{2\pi\times15}[/itex] = 0.4 milliwebers/m2 , which X 100 square meters yields [itex]\Phi[/itex] = 40 milliwebers

    not much flux
    but when you consider it all appeared in maybe ten microseconds
    [STRIKE]d[itex]\Phi[/itex]/dt = 400 webers per second[/STRIKE]
    [STRIKE]which in one turn induces 400 volts.[/STRIKE]

    oops!
    d[itex]\Phi[/itex]/dt = 40 milliwebers / 10μsec = 40X10-3/10-5 = 4000 webers/sec
    which in one turn induces 4 kilovolts

    I found a newer reference on lightning than the old book i had at the time, which was from 1950's.
    It suggests lightning di/dt in range of a few hundreds of kiloamps per microsecond
    http://www.iclp-centre.org/pdf/Invited-Lecture-3.pdf

    which of course gives higher result than [STRIKE]the 400[/STRIKE] i got above.
    But the absence of damage suggested actual transient voltage presented to the instruments was [STRIKE]somewhat [/STRIKE] quite a bit lower.

    i hope my rusty old math is okay above, further corrections are welcome.

    old jim
     
    Last edited by a moderator: May 1, 2014
  14. May 1, 2014 #13

    Borek

    User Avatar

    Staff: Mentor

    Just to make sure we are talking about the same thing (could be these are different sides of the same coin). My understanding was always that the step voltages are not induced (that is, they have nothing to do with existence of the loop), they are just because two points on the ground are at different voltage. The simplest explanation being that if the point where the lightning strikes has some potential, and the ground has some resistance, voltage of the surface points around changes with IR, the further from the strike we are the lower the potential. Something like that:

    different_voltage_zones_to_large_a_step.gif

    and that:

    http://en.wikipedia.org/wiki/Earth_potential_rise

    (sorry if I am talking about obvious things, I am just not convinced we refer to the same effect).

    BTW: check your LaTeX formulas now (right click them, and select Show math as Tex command) :smile:
     
  15. May 1, 2014 #14

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    Ahhh Thanks ! I mis-understood your meaning of step to mean a step function 1/s ....


    your 'step' was my 'earth potential drop'.

    The conclusion was it was one or a combination of the two effects.

    I learned from the design engineers who came down from Bethesda to help investigate the event:
    Lightning protection has its own ground rods, separate from plant's ground mat. The lightning grounds go way deeper than the wire mesh ground mat that's buried under the plant. The idea is to dump lightning charge well below the ground mat so the mat can act as an equipotential "magic carpet" that rides up and down with the local earth potential. All plant equipment is tied to the ground mat so it can float together with little or no 'step voltage'.

    The design folks said they'd addressed 'step voltage' by previous paragraph
    but said they hadn't figured induction when routing their lightning ground cables. This was a mid-60's design.

    Inspection found a few lightning rods missing and some wires in disarray from construction work atop the dome. The lightning system was put back in tip-top shape and we went back to making cheap electricity.
     
    Last edited: May 1, 2014
  16. May 1, 2014 #15

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    PS Thanks for fixing up the formula. I will learn to use that feature !

    i seem to be inordinately awkward at these things....
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Can a second earthing conductor drive the fault current back?
Loading...