MHB Can AC^2 be Proven to Equal AB(AB+BC) in Triangle ABC with Angles B=80 and C=40?

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
In triangle ABC with angles B=80° and C=40°, the goal is to prove that AC² equals AB(AB + BC). The relationship involves applying the Law of Sines and the Law of Cosines to find the lengths of the sides based on the given angles. By establishing the necessary equations and substituting known values, the proof can be constructed. The discussion emphasizes the geometric properties and relationships within the triangle to validate the equation. Ultimately, the proof hinges on accurate calculations and understanding of triangle properties.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC,\angle B=80^o,\angle C=40^o$
$prove :\overline{AC}^2=\overline{AB}(\overline{AB}+\overline{BC})$
 
Mathematics news on Phys.org
Albert said:
$\triangle ABC,\angle B=80^o,\angle C=40^o$
$prove :\overline{AC}^2=\overline{AB}(\overline{AB}+\overline{BC})$

we have $\angle A=60^\circ$

using law of sines we have

$\frac{\overline{BC}+\overline{AB}}{\overline{AC}}= \frac{\sin \angle A + \sin \angle C}{\sin \angle B}=\frac{\sin \,60^\circ + \sin \,40^\circ}{\sin \,80^\circ} $
$= 2\frac{\sin \,50^\circ \cos \,10^\circ}{\cos 10^\circ} = 2\sin \,50^\circ $
further
$\frac{\overline{AC}}{\overline{AB}}= \dfrac{\sin\,80^\circ}{\sin\,40^\circ}= \dfrac{2\sin\,40^\circ\cos\,40^\circ}{\sin\,40^\circ}= 2\cos\,40^\circ = 2 \sin \, 50^\circ$

from above 2 we get the result
 
Albert said:
$\triangle ABC,\angle B=80^o,\angle C=40^o$
$prove :\overline{AC}^2=\overline{AB}(\overline{AB}+\overline{BC})$
hope someone can prove it using geometry
 
Albert said:
hope someone can prove it using geometry

Draw the triangle ABC and extend AB ro D such that BC = BD
join CD

now triangle CBD is isosceles triangle and hence $\overline{BC} = \overline{BD}$
now $\triangle ABC$ and $\triangle ACD$ are similar

so $\frac{\overline {AB}}{\overline {AC}}= \frac{\overline {AC}}{\overline {AD}} $
or ${\overline {AB}} * {\overline {AD}}= ({\overline {AC}})^2 $
or ${\overline {AB}} * ({\overline {AB} + \overline {BD}})= ({\overline {AC}})^2 $
or ${\overline {AB}} * ({\overline {AB} + \overline {BC}})= ({\overline {AC}})^2 $
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top