MHB Can AC^2 be Proven to Equal AB(AB+BC) in Triangle ABC with Angles B=80 and C=40?

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
In triangle ABC with angles B=80° and C=40°, the goal is to prove that AC² equals AB(AB + BC). The relationship involves applying the Law of Sines and the Law of Cosines to find the lengths of the sides based on the given angles. By establishing the necessary equations and substituting known values, the proof can be constructed. The discussion emphasizes the geometric properties and relationships within the triangle to validate the equation. Ultimately, the proof hinges on accurate calculations and understanding of triangle properties.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC,\angle B=80^o,\angle C=40^o$
$prove :\overline{AC}^2=\overline{AB}(\overline{AB}+\overline{BC})$
 
Mathematics news on Phys.org
Albert said:
$\triangle ABC,\angle B=80^o,\angle C=40^o$
$prove :\overline{AC}^2=\overline{AB}(\overline{AB}+\overline{BC})$

we have $\angle A=60^\circ$

using law of sines we have

$\frac{\overline{BC}+\overline{AB}}{\overline{AC}}= \frac{\sin \angle A + \sin \angle C}{\sin \angle B}=\frac{\sin \,60^\circ + \sin \,40^\circ}{\sin \,80^\circ} $
$= 2\frac{\sin \,50^\circ \cos \,10^\circ}{\cos 10^\circ} = 2\sin \,50^\circ $
further
$\frac{\overline{AC}}{\overline{AB}}= \dfrac{\sin\,80^\circ}{\sin\,40^\circ}= \dfrac{2\sin\,40^\circ\cos\,40^\circ}{\sin\,40^\circ}= 2\cos\,40^\circ = 2 \sin \, 50^\circ$

from above 2 we get the result
 
Albert said:
$\triangle ABC,\angle B=80^o,\angle C=40^o$
$prove :\overline{AC}^2=\overline{AB}(\overline{AB}+\overline{BC})$
hope someone can prove it using geometry
 
Albert said:
hope someone can prove it using geometry

Draw the triangle ABC and extend AB ro D such that BC = BD
join CD

now triangle CBD is isosceles triangle and hence $\overline{BC} = \overline{BD}$
now $\triangle ABC$ and $\triangle ACD$ are similar

so $\frac{\overline {AB}}{\overline {AC}}= \frac{\overline {AC}}{\overline {AD}} $
or ${\overline {AB}} * {\overline {AD}}= ({\overline {AC}})^2 $
or ${\overline {AB}} * ({\overline {AB} + \overline {BD}})= ({\overline {AC}})^2 $
or ${\overline {AB}} * ({\overline {AB} + \overline {BC}})= ({\overline {AC}})^2 $
 

Similar threads