Smacal1072 said:
The question Striphe is posing is: If we disturb this equilibrium (say, by momentarily enforcing the top and bottom to be the same temperature), and then allow the system to relax to equilibrium again, will the temperature gradient re-emerge?
Sure. It might take a long time, however. You have just choked off convection, so about all that is left is diffusion. Diffusion is a very slow process. This might be a part of klimatos' issue. As an atmospheric scientist, he views a situation in which the lapse rate is smaller than adiabatic as indicative of a stable atmosphere. There is little convection in such situations, almost none in the case of a temperature inversion. (That's why Los Angeles has such a problem with smog.)
Why am I so sure? For a fixed amount of total energy, entropy will reach a maximum under isentropic conditions. The second law of thermodynamics dictates that this is the equilibrium condition of this isolated system.