MHB Can an Equilateral Triangle be Formed with Rational Vertices on the X-Axis?

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Geometry
AI Thread Summary
An equilateral triangle cannot be formed with rational vertices on the x-axis due to the properties of rational coordinates. If vertices A, B, and C are rational, and C is positioned at the origin, a rotation transformation leads to a contradiction involving the irrational number √3. The transformation shows that one coordinate must be irrational, which contradicts the assumption that all coordinates are rational. An alternative approach also confirms that fixing points A and B on the x-axis results in a non-rational value for the height of the triangle. Thus, it is impossible to construct such a triangle with all rational vertices.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
in a plane point is said to be rational if both x and y co-ordinates are rational. Show that if in a $\triangle$ ABC all the vericles A , B, c are rational then $\triangle$ cannot be equilateral
 
Last edited:
Mathematics news on Phys.org
[sp]Suppose that $ABC$ is an equilateral triangle whose vertices are all rational. By translating the axes through rational distances, we may assume that $C$ is at the origin. Let $A$ be the point $(x,y)$ and $B$ be the point $(u,v)$, where $x,y,u,v$ are all rational. The linear transformation of rotation through $\pi/3$ takes $A$ to $B$. But this transformation is given by the matrix $\begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) \\ \sin(\pi/3) & \cos(\pi/3) \end{bmatrix} = \begin{bmatrix} \frac12 & -\frac{\sqrt3}2 \\ \frac{\sqrt3}2 & \frac12 \end{bmatrix}.$ It follows that $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \frac12 & -\frac{\sqrt3}2 \\ \frac{\sqrt3}2 & \frac12 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac12 x -\frac{\sqrt3}2y \\ \frac{\sqrt3}2 x + \frac12y \end{bmatrix},$ so that $u = \frac12 x -\frac{\sqrt3}2y$. But then $\sqrt3 = \frac{x-2u}y$ – a contradiction since the right side is rational and the left side is not. Therefore no such triangle can exist.[/sp]
 
great answer by Opalg. This gives me another insight of the solution

my solution

Without loss of generality we can chose the co-ordinates ( we can make this by proper shift of co-ordinates) as A= (0,0), B= (x,y), C=(a,b) with x y
a and b being rationalNow slope of AB = $\frac{y}{x}$ is rational

Slope of AC = $\frac{b}{a}$ is rationalSo $\tan\angle (BAC) = \frac{\frac{y}{x} –\frac{b}{a}} {1 + \frac{by}{ax}}$ which is rational as both numerator and denominator are rational

As $\tan \, 60^0 = \sqrt(3)$ is irrational so $\angle (BAC)$ cannot be $60^0$ as tan of the angle is rational.

so the triangle cannot be equilateral

Hence proved
 
kaliprasad said:
in a plane point is said to be rational if both x and y co-ordinates are rational. Show that if in a $\triangle$ ABC all the vericles A , B, c are rational then $\triangle$ cannot be equilateral
if $\triangle ABC$ is equilateral with side length a
let x and y coordinates of points being :$A(0,0),B(a,0),C(\frac{a}{2},b)$
(here $a,b$ are all rational)
the area of $\triangle ABC=\dfrac {\sqrt 3a^2}{4}=\dfrac {ab}{2}$
$\therefore b=\dfrac {\sqrt 3a}{2}$ is not rational
and we conclude that $\triangle ABC$ cannot be equilateral
 
Albert said:
if $\triangle ABC$ is equilateral with side length a
let x and y coordinates of points being :$A(0,0),B(a,0),C(\frac{a}{2},b)$
(here $a,b$ are all rational)
the area of $\triangle ABC=\dfrac {\sqrt 3a^2}{4}=\dfrac {ab}{2}$
$\therefore b=\dfrac {\sqrt 3a}{2}$ is not rational
and we conclude that $\triangle ABC$ cannot be equilateral

B(a,0) does not cover all cases of B for example B=(1,1) by rotation cannot be a rational point in x-axis
 
we fix point A and B on the x axis,and point C(a/2 ,b)
(here a,b rational) and show that b cannot be rational
if the triangle is equilateral
so we don't even have to rotate
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top