For Quicky #10:
Here are sets of numbers enclosed by square brackets. Fill the next set of numbers. [1],[1,1],[2,1],[1,2,1,1],[1,1,1,2,2,1],[3,1,2,2,1,1], [....]
Start with [1], we count 1 number 1, so we write [1, 1], then we continue counting 2 numbers 1, so we write [2, 1], now that's 1 number 2, and 1 number 1, so we write [1, 2, 1, 1],...
So a few next sets are:
[1, 1, 1, 2, 2, 1]
[3, 1, 2, 2, 1, 1]
[1, 3, 1, 1, 2, 2, 2, 1]
[1, 1, 1, 3, 2, 1, 3, 2, 1, 1]
...
For # 15,
1023 players (yes, not 1024) participate in a tournament in which each game produces a decisive winner. Players are eliminated by knock-out with byes being given when odd number of players occur at any given round. How many matches need to be played to find a winner ?
I think it's 1022, since 1022 playes must be knocked-out before the winner is found.