Can energy exist without mass?

In summary, In summary, photons do have momentum, but it only exists when they're converted into mass and energy. Vacuum energy exists even in the absence of matter.
  • #1
diffusion
73
0
Hey guys, my first post here. I need a little help answering this seemingly simple question: can energy exist without mass?

At first I thought this an easy answer. Simply, no. Einsteins famous equation E=mc^2 shows us that energy and mass are directly proportional, so without mass, the value of E= 0. But after thinking some more it doesn't seem like such an easy answer. For example, light carries both energy and momentum in the form of photons, yet photons are said to be massless. How can they be massless when they carry energy and momentum? I'm still a little confused about the whole invariant/relativistic mass concept.

Also, vacuum energy is said to be an energy that exists in space even in the complete absence of matter. Again, how can this energy exist without matter?

So, to make things easy, I'd just like to know: Can energy exist without mass? And, if possible, could someone please explain the points stated above about the energy of massless photons and vacuum energy. Thanks.
 
Physics news on Phys.org
  • #2
e=mc^2 doesn't say that mass and energy are proportional, it says that mass and energy can be converted into each other, or alternatively that mass is a form of stored energy.

One of the big leaps of quantum mechanics is that momentum can exist without mass, photons can have momentum without having mass.
The other is that everything with momentum has a wavelength even 'solid' objects.
 
Last edited:
  • #3
diffusion said:
Hey guys, my first post here. I need a little help answering this seemingly simple question: can energy exist without mass?

At first I thought this an easy answer. Simply, no. Einsteins famous equation E=mc^2 shows us that energy and mass are directly proportional, so without mass, the value of E= 0. But after thinking some more it doesn't seem like such an easy answer. For example, light carries both energy and momentum in the form of photons, yet photons are said to be massless. How can they be massless when they carry energy and momentum? I'm still a little confused about the whole invariant/relativistic mass concept.

Also, vacuum energy is said to be an energy that exists in space even in the complete absence of matter. Again, how can this energy exist without matter?

So, to make things easy, I'd just like to know: Can energy exist without mass? And, if possible, could someone please explain the points stated above about the energy of massless photons and vacuum energy. Thanks.

You need to read an entry in our FAQ in this section of PF because you have the common misconception about that infamous Einstein equation. Furthermore, photons have no mass in the conventional sense, but yet, it carries energy (and momentum, and spin).

Zz.
 
  • #4
diffusion said:
Hey guys, my first post here. I need a little help answering this seemingly simple question: can energy exist without mass?

At first I thought this an easy answer. Simply, no. Einsteins famous equation E=mc^2 shows us that energy and mass are directly proportional...

Except that equation is wrong. If by "mass" you mean "rest mass" which you always should mean when you say mass (an invarient quantity), then Einstein's equation should read
[tex]
E=\sqrt{m^2c^4+p^2c^2}
[/tex]
where p is momentum.

If the mass is zero, as it is for a photon,
[tex]
E=pc
[/tex]
which is *not* necessarily zero.
 
  • #5
Do photons really have momentum, or does the momentun only exist when the photons are converted into mass + energy via capture by electrons?
 
  • #6
Thanks for the responses. But as for the intitial question I'm still not sure. Can energy exist without any matter anywhere in the universe? Not sure if you would classify photons as matter, and what about vacuum energy?
 
  • #7
Jeff Reid said:
Do photons really have momentum, or does the momentun only exist when the photons are converted into mass + energy via capture by electrons?

well, then, by conservation of momentum, the photon did "really" have momentum.
 
  • #8
In order to detect a photon, you have to "capture" it and thereby destroy it. So you might as well ask, do photons really exist at all, or are they simply a convenient mathematical shorthand for a certain kind of transfer of energy and momentum in which the E and p disappear at one point and reappear at another point after a time interval given by [itex]\Delta t = \Delta x / c[/itex]?
 
  • #9
First of all, I think the uncertainties about Rest Mass vs Relativistic Mass are at the center of your confusion. By most models, photons do have energy, which they carry in the form of Relatvivstic Mass only. So yes all enegry has mass but, as has been mentioned earlier, the word "mass" by itself almost allways means Rest Mass, so that's a bit of a red herring

As for this:
diffusion said:
Thanks for the responses. But as for the intitial question I'm still not sure. Can energy exist without any matter anywhere in the universe? Not sure if you would classify photons as matter, and what about vacuum energy?
It's a more complicated question than you might imagine. For the simple answer, and the one I think you're looking for, yes. If half the matter in the universe were converted to antimatter, and came instantly into contact with all the remaining "normal" matter, or by some other means all of the matter in the universe could be reacted with (a course of action I do not in any way endorse), the result would be the conversion of all matter into energy.
The question then gets complicated when we ask if such energy can be said to "exsit" without any matter around to observe it. But I don't think that's the sort of thing you were asking.
 
  • #10
hi diffusion,
It's look like great question...
 
  • #11
diffusion said:
So, to make things easy, I'd just like to know: Can energy exist without mass? And, if possible, could someone please explain the points stated above about the energy of massless photons and vacuum energy. Thanks.

The special case of photons is confusing just because of the way it’s phrased. Photons don’t have any ‘rest mass,’ all of their energy is associated with their frequency in motion, like a wave on the sea: the wave doesn’t exist if it isn’t moving - so it can possesses energy (and an equivalent mass) as it moves, but it has no ‘rest mass.’ And as far as energy and mass goes, I find it easier to think of them as mass/energy, because they’re the same thing being called by different names, like a millimeter is just a smaller unit of a meter: both are units of length.

Vacuum fluctuations are an entirely different issue; they’re composed of ‘virtual particles’ which exist simultaneously in positive and negative energy states which perfectly cancel out (as far as we can tell). The baseline energy state is zero, but there are tiny regions above and below that baseline state in constant rapid fluctuation…so it’s a ‘fuzzy’ baseline, much like electrons occupy ‘fuzzy’ valence shells (in fact, electron shells appear to be ‘fuzzy’ because of the vacuum fluctuations that constantly bump them around).

What I find really interesting about vacuum fluctuations, is that we can confine a region of the fluctuations to forbid all non-integer wavelengths from existing in the space between two closely-placed metal surfaces. This exclusionary zone possesses a vacuum fluctuation energy level –below- the ‘zero’ baseline. The energy difference between the inside of the plates and the outside of the plates causes the plates to move together, and that effect is called the Casimir force. Recent theory suggests that it may also be possible induce a –positive- Casimir energy difference between two surfaces to make them push apart a little: Inverting the Casimir force

That’s my understanding of it anyway. Maybe the local experts can offer greater clarification.
 
Last edited:
  • #12
One of the simplest cosmological models using the equations of general relativity is for a massless but energized universe. De Sitter space could meet this condition.
 

1. What is the relationship between energy and mass?

The relationship between energy and mass is described by Albert Einstein's famous equation, E=mc^2. This equation states that energy and mass are interchangeable, and that mass can be converted into energy and vice versa.

2. Can energy exist without mass?

Yes, energy can exist without mass. Photons, which are particles of light, have energy but no mass. This is because they travel at the speed of light, which makes their mass effectively zero according to Einstein's theory of relativity.

3. Can mass be created from energy?

Yes, mass can be created from energy. This process is known as pair production and occurs when high-energy photons are converted into particles with mass, such as electrons and positrons.

4. Can energy be destroyed?

According to the law of conservation of energy, energy cannot be created or destroyed but can only be transformed from one form to another. So while energy can be converted into different forms, it cannot be destroyed.

5. How does the concept of mass-energy equivalence impact our understanding of the universe?

The concept of mass-energy equivalence has had a significant impact on our understanding of the universe. It has helped explain the relationship between matter and energy and has played a crucial role in the development of technologies such as nuclear power. It has also aided in our understanding of the origins and evolution of the universe, as well as the behavior of objects at extreme speeds and energies.

Similar threads

  • Other Physics Topics
Replies
27
Views
1K
Replies
18
Views
3K
  • Other Physics Topics
Replies
26
Views
6K
  • Other Physics Topics
Replies
3
Views
3K
  • Other Physics Topics
Replies
1
Views
1K
  • Other Physics Topics
Replies
2
Views
915
  • Introductory Physics Homework Help
Replies
28
Views
739
  • Classical Physics
Replies
21
Views
1K
  • Other Physics Topics
Replies
4
Views
4K
  • Introductory Physics Homework Help
Replies
4
Views
815
Back
Top