Can I Find the Logarithmic Expansions of Log[x]?

  • Thread starter Thread starter mathelord
  • Start date Start date
  • Tags Tags
    Log
mathelord
How Do I Find The Logarithmic Expansions Of Log[x],i Mean The Series Of Log[x].it Is Urgent
 
Mathematics news on Phys.org
The series expansion of any function can be obtained by Taylor's series expansion:
f(x)=f(a)+(x-a)f'(a)+(x-a)^2f"(a)/2!+(x-a)^3f"'(a)/3!+...

Using the above formula, any function can be expanded in terms of powers of (x-a), provided that all derivatives of f(x) are defined at x=a.

Note: logx can not be expanded in terms of powers of x, because the derivatives of logx are not defined at x=0.
 
mustafa said:
Note: logx can not be expanded in terms of powers of x, because the derivatives of logx are not defined at x=0.
I think you mean log x cannot be expanded about zero in a series of nonnegative powers.
 
example can be done via the log(1+x) series |x|<1

x-x^2/2+x^3/3...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top