MHB Can I Solve for c by Replacing b with a Value Greater Than 0?

  • Thread starter Thread starter mathland
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The discussion revolves around solving for variable c by substituting b with a value greater than 0. The equation (2x - b)(7x + b) is expanded and equated to 14x^2 - cx - 16, leading to two solutions for b: 4 and -4. When b equals 4, c is determined to be 20, and when b is -4, c is -20. The calculations confirm the relationships between the variables, demonstrating the validity of the solutions. The thread concludes with a lighthearted comment unrelated to the mathematical discussion.
mathland
Messages
33
Reaction score
0
I replace b with any value greater than 0 and then solve for c. Right?

FB_IMG_1612321193999.jpg
 
Mathematics news on Phys.org
What do you get when you expand the LHS and equate the resulting terms with the corresponding terms in the RHS of the given equation
 
Greg said:
What do you get when you expand the LHS and equate the resulting terms with the corresponding terms in the RHS of the given equation

Ok. I will do as you suggested and be back.
 
It's been 7 months now! Are you still working on it?

For those who were wondering, there are two solutions.
(2x- b)(7x+ b)= 14x^2+ 2bx- 7bx- b^2= 14x^3- 5bx- b^2. That is to be equal to 14x^2- cx- 16.

So we must have -5b= -c and -b^2= -16. b^2= 16 so b= 4 or b= -4.
If b= 4, -5b= -20= -c so c= 20.
If b= -4, -5b= 20= -c so c= -20.

Check:
(2x- 4)(7x+ 4)= 14x^2+ 8x- 28x- 16= 14x^2- 20x- 16.
(2x+ 4)(7x- 4)= 14x^2- 8x+ 28x- 16= 14x^2+ 20x- 16.
 
Beer soaked comment follows.
Country Boy said:
It's been 7 months now! Are you still working on it?
...
He's been banned permanently.
 
I'll bet I could drink that cask of wine in less than 20 days!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top