Jim, let me define "oscillate" and "interfere", maybe that will help.
Oscillate means that a quantum object changes a quantum characteristic with time. Interfere means that two different quantum processes can contribute to the same measurement, and therefore when we calculate the probabilities the two processes interfere.
To get oscillation, you need to begin with just one quantum state.
To get interference, you need to begin with two quantum states.
There are three degrees of freedom in neutrino states (and three more for the anti neutrinos, but leave that off for now). We can describe those three degrees of freedom two different ways. This is not semantics, it is mathematics.
The natural and less confusing way to describe them is to use the mass eigenstates to separate the particles. Then the neutrinos are called "1", "2", and "3". If you do this, then a process that produces a "neutrino" in the sun will require modeling three neutrinos to model it. The overall interaction will be a sum of contributions from the 1, the 2, and the 3 neutrino. Because of the sum, these interactions can interfere. Because the three neutrinos have 3 different masses, they will have different wave lengths, and therefore there will be interference between the 3 neutrinos.
When neutrinos were first discovered, it was believed that there was only one. When it was discovered that there was more than one type, it was assumed that they were all massless. If neutrinos really were massless, it would make no sense to call them "1", "2" and "3" according to their mass eigenstates, so instead they called them "electron", "muon", and "tau" neutrinos according to the charged lepton that decayed to produce them.
This led to the less natural and more confusing, but historical way to describe the three degrees of freedom. This is called "flavor eigenstates", but what is really meant is flavor relative to the charged leptons, that is, relative to the electron, muon, and tau. With that method, the decay of a muon in the sun proceeds not through three neutrinos with three different masses, but instead with a single neutrino, the "muon anti neutrino" whose mass is not sharply defined.
The problem with the less natural method is that it has to give the same results as the more natural, mass method. But the three massive neutrinos interfere with each other. To match the results, you have to invent something called "neutrino oscillation".
It might help to look at what happens when the "muon anti neutrino" gets absorbed by a lepton on earth.
The Earth has a lot of charged leptons, almost all of which are electrons. Accordingly, the easiest lepton to see absorbing that muon anti neutrino would be an electron. And if an electron absorbed a muon anti neutrino, we would expect it to turn into a muon.
Just exactly this activity is observed on the earth. However, the rate at which it occurs is about 1/3 that expected from an analysis of the number of muons expected to decay in the sun. (Forgive me if I screw the details on this up, I study elementary particles, not astrophysics.) The deficiency was discoved quite some time ago at the Homestake mine in South Dakota. The modern explanation is "neutrino oscillation".
So it's not so much semantics as mathematics. The early names for the neutrinos stuck and you now have to deal with it. If you instead called them the 1, 2, and 3 neutrino, your life would be easier and all you would have to deal with is interference.
The best write-up I've seen on neutrino oscillations on this subject (at the beginning grad student level) is that of Smirnov, of the MSW effect, but I can't find it on the web. I'm the "C A Brannen" mentioned in the following review of neutrino masses and quark / lepton complementarity:
http://arxiv.org/abs/hep-ph/0603118