Can NNLS algorithms solve overdetermined systems with positive constraints?

AI Thread Summary
NNLS algorithms can effectively address overdetermined systems of linear equations with positive constraints, particularly when fitting experimental data. The challenge arises when using standard least squares methods, which may yield oscillations and negative coefficients that lack physical relevance. Specific algorithms tailored for non-negative constraints are available, such as the non-negative least squares (NNLS) method. Resources and code implementations for NNLS in C and Fortran can assist in solving these types of problems. Utilizing these specialized algorithms can lead to more accurate and meaningful results in data fitting scenarios.
Sergei_G
Messages
5
Reaction score
0
Hello everyone,

I'd like to solve overdetermined system of linear equations (in fact to fit experimental data)
(like y1=C1*X11+C2*X12+...+Cm1*X1m)
y2=C1*X21+C2*X22+..+Cm*X2m
...
yn=C1*Xn1+C2*Xn2+...Cm*Xnm)
sometimes n>>m sometimes n>~m , yi and xij are known coefficients
and I know ab initio that all unknowns C1...Cm are positive. Are there specific algorithms developed for such problem? I tried to solve it with simplest least square, but I always get something like oscillations with increase of m - Positive C are compensated by negative C and fit becomes perfect but it does not have physical sence.

Thanks,

Sergei.
 
Mathematics news on Phys.org
Thanks!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top