Can particles and geometry coexist in gravitational theory?

mewmew
Messages
113
Reaction score
0
I am doing some research this summer with a professor and we are learning GR. For the first time I am thinking about gravity actually in terms of geometry and started to ask my professor questions. He is a VERY smart man but I didn't get exactly what I was looking for with one question. I asked if space actually was geometry, as opposed to say just math that is geometry that explains how things work and he said it was actually geometry. I believe this to be true and I like it a lot, but he also said gravitons are real. I asked how can gravitons be real in GR and he seemed to slightly side step it and tell me that both are correct. He is very smart and perhaps just didn't have the time to explain to me how both can co exist or perhaps it is a question that doesn't have a clear cut answer. That is what I want to ask you guys! Thanks for any help.
 
Physics news on Phys.org
The GR geometry changes are real; they have been observed. Your professor may be a string theorist; they believe gravitons are real, but no-one has ever detected one.
 
Yes, as a matter of fact he is. He said that not many people however would disagree that gravitons are real, is this perhaps wrong? He also said we are quite far away from finding them and that he will most likely not live to see them discovered but may live to see gravitational waves discovered which are more an effect of the geometry. that is of course just a guess. Now, is it something like an electron where something can be a "wave" and a particle? I just don't see how gravitons and GR mesh together but only know part of the fundementals of both.
 
Last edited:
You might take a look at

http://xxx.lanl.gov/abs/astro-ph/0006423

I don't really understand all the details, but this much I do understand:

You start out with a spin-2 field theory in flat space-time, then find out that because gravity couples to everything (well, everything with energy or pressure), this flat metric is not observable, and that observable space-time must have a non-Miskowskian geometry. So you start with "particles", and wind up with geometry in the end.

Or to quote from the abstract

Although this field theoretic approach, which has been advocated repeatedly by a number of authors, starts with a spin-2 theory on Minkowski spacetime, it turns out in the end that the flat metric is actually unobservable, and that the physical metric is curved and dynamical.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top