I found the following paper on the arXiv:
http://arxiv.org/abs/1005.4172
Abstract:
"We present a novel derivation of special relativity based on the information physics of events comprising a causal set. We postulate that events are fundamental, and that some events have the potential to receive information about other events, but not vice versa. (This is causality) This leads to the concept of a partially-ordered set of events, which is called a causal set. Quantification proceeds by selecting two chains of coordinated events, each of which represents an observer, and assigning a valuation to each chain. Events can be projected onto each chain by identifying the earliest event on the chain that can be informed about the event. In this way, each event can be quantified by a pair of numbers, referred to a pair, that derives from the valuations on the chains. Pairs can be decomposed into a sum of symmetric and antisymmetric pairs, which correspond to time-like and space-like coordinates. From this pair, we derive a scalar measure and show that this is the Minkowski metric. The Lorentz transformations follow, as well as the fact that speed is a relevant quantity relating two inertial frames, and that there exists a maximal speed, which is invariant in all inertial frames. All results follow directly from the Event Postulate and the adopted quantification scheme."
When events are fundamental, and one event can have influence on another along a chain of events; this is a description of causality. The paper deriveds the Minkowski metric, the Lorentz transfromations, and the speed of light, all from causality.
However, I'm not so sure about his method. When he says, "Events can be projected onto each chain by identifying the earliest event on the chain that can be informed about the event", this seems to already assume a Minkowski-like metric, right? Any help with these concepts would be appreciated.