Jhenrique
- 676
- 4
Given a function f(x(t, s) y(t, s)), if is possible to compact
\frac{∂f}{∂t}=\frac{∂f}{∂x} \frac{∂x}{∂t}+\frac{∂f}{∂y} \frac{∂y}{∂t}
by
\frac{df}{dt}=\bigtriangledown f\cdot \frac{d\vec{r}}{dt}
So, analogously, isn't possible to compact the sencond derivate
\frac{\partial^2 f}{\partial s \partial t} = \frac{\partial^2 f}{\partial x^2} \frac{\partial x}{\partial s }\frac{\partial x}{\partial t } + \frac{\partial^2 f}{\partial x \partial y}\left( \frac{\partial y}{\partial s }\frac{\partial x}{\partial t } + \frac{\partial x}{\partial s }\frac{\partial y}{\partial t }\right) + \frac{\partial^2 f}{\partial y^2} \frac{\partial y}{\partial s }\frac{\partial y}{\partial t }+\frac{\partial f}{\partial x}\frac{\partial^2 x}{\partial s \partial t}+\frac{\partial f}{\partial y}\frac{\partial^2 y}{\partial s \partial t}
using matrix with the matrix Hessian(f) ?
\frac{∂f}{∂t}=\frac{∂f}{∂x} \frac{∂x}{∂t}+\frac{∂f}{∂y} \frac{∂y}{∂t}
by
\frac{df}{dt}=\bigtriangledown f\cdot \frac{d\vec{r}}{dt}
So, analogously, isn't possible to compact the sencond derivate
\frac{\partial^2 f}{\partial s \partial t} = \frac{\partial^2 f}{\partial x^2} \frac{\partial x}{\partial s }\frac{\partial x}{\partial t } + \frac{\partial^2 f}{\partial x \partial y}\left( \frac{\partial y}{\partial s }\frac{\partial x}{\partial t } + \frac{\partial x}{\partial s }\frac{\partial y}{\partial t }\right) + \frac{\partial^2 f}{\partial y^2} \frac{\partial y}{\partial s }\frac{\partial y}{\partial t }+\frac{\partial f}{\partial x}\frac{\partial^2 x}{\partial s \partial t}+\frac{\partial f}{\partial y}\frac{\partial^2 y}{\partial s \partial t}
using matrix with the matrix Hessian(f) ?