Can three points on a circle have a distance between them of less than r^(1/3)?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The discussion centers on the mathematical problem of whether three distinct points with integer coordinates on a circle of radius \( r > 0 \) can be separated by a distance of less than \( r^{1/3} \). The conclusion, as established by Opalg, is that at least two of these points must be separated by a distance of at least \( r^{1/3} \). This problem was originally presented as Problem A-5 in the 2000 William Lowell Putnam Mathematical Competition, highlighting its significance in mathematical circles.

PREREQUISITES
  • Understanding of Euclidean geometry
  • Familiarity with integer coordinate systems
  • Knowledge of the properties of circles
  • Basic concepts of distance measurement in mathematics
NEXT STEPS
  • Study the properties of circles in Euclidean space
  • Explore integer lattice points and their distributions
  • Learn about the Putnam Mathematical Competition and its problem-solving techniques
  • Investigate distance metrics in geometry
USEFUL FOR

Mathematicians, students preparing for mathematical competitions, and anyone interested in geometric properties and distance problems.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1/3}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 263 - May 15, 2017

This was Problem A-5 in the 2000 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg for his correct answer, which follows:

By a translation, we can assume that one of the three points is at the origin. The other two points are then $(a,b)$ and $(c,d)$, where $a,b,c,d$ are all integers. Let $l$ be the maximum distance between the points. Then $a^2+b^2 \leqslant l^2$ and $c^2+d^2 \leqslant l^2$. Also, the three points are not collinear, which implies that $\dfrac ba \ne \dfrac dc$. (That assumes that $a$ and $c$ are nonzero. A minor modification would be needed to deal with the case where one of them is zero.) So $bc-ad\ne0$. Since $a,b,c,d$ are all integers, it follows that $|bc-ad| \geqslant1.$The perpendicular bisector of the line from $(0,0)$ to $(a,b)$ has equation $y - \frac12b = -\frac ab\bigl(x - \frac12a\bigr)$, or $-2ax + 2by = a^2 + b^2$. In the same way, the perpendicular bisector of the line from $(0,0)$ to $(c,d)$ has equation $-2cx + 2dy = c^2+d^2$. Those two lines intersect at the centre of the circle. Solving the two equations, you see that the centre is at the point $(x,y)$ given by $$2(bc-ad)x = d(a^2+b^2) - b(c^2+d^2), \qquad 2(bc-ad)y = c(a^2+b^2) - a(c^2+d^2).$$ Since $1\leqslant |bc-ad|$, it follows that $$4x^2 \leqslant \bigl(d(a^2+b^2) - b(c^2+d^2)\bigr)^2 \leqslant (d^2 + b^2)\bigl((a^2+b^2)^2 + (c^2+d^2)^2 \bigr) \leqslant 2(d^2 + b^2)l^4$$ (the middle of those three inequalities coming from Cauchy–Schwarz). Therefore $x^2 \leqslant \frac12(d^2 + b^2)l^4$, and in the same way $y^2 \leqslant \frac12(c^2+a^2)l^2$.

The radius of the circle is given by $r^2 = x^2+y^2 \leqslant \frac12\bigl((a^2 +b^2 + c^2 + d^2\bigr)l^4 \leqslant \frac12(2l^2)l^4 = l^6$, from which $l \geqslant r^{1/3}.$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K