- #1
zonde
Gold Member
- 2,961
- 224
bhobba said:Entanglement has nothing to do with anything like that - its simply applying the principle of superposition to systems. I gave a very careful explanation before - its really all there is to it. Nothing weird in the sense of being mystical etc etc is going on - it simply leads to a different type of correlation than occurs classically. The difference is classically you know it has properties all the time ie the green and red slips of paper are always green and red. In QM its more subtle as Bells theorem shows - but it's still just a correlation - its not some phenomena that needs further explanation. We know its explanation - systems can be in superposition and hence are correlated in a way different to classical correlations.
I quoted these post from other thread. I don't want to distract discussion in other thread so I'm starting a new one about statements in these posts.Haelfix said:But at the end of the day, as long as you give up realism (counterfactual definitiveness to use the philosophical lingo) and simply accept that we don't have bits, but instead we have qubits, there is absolutely nothing bizarre about Bells inequalities being violated.
Basically the question is if we can violate Bell inequalities by two separated but correlated systems that can be as non-classical as we like (as long as we can speak about paired "clicks in detectors") i.e. if we give up counter factual definiteness (CFD) but keep locality.
Bhobba and Haelfix are making bold claim that this can be done. But this is just handwaving. So I would like to ask to demonstrate this based on model. Say how using correlated qubits at two spacelike separated places can lead to violation of Bell inequalities in paired detector "clicks"?
There is example of very simple model that could be used as baseline:
https://www.physicsforums.com/showthread.php?p=2817138#post2817138