rubi said:
I didn't say that it was apriori unreasonable. I'm just saying that it is a perfectly valid point of view to prefer its rejection over the alternatives. Reichenbach's principle may or may not be relalized by nature. We must take the alternative seriously, especially if it leads to a simpler theory.
If the only gain in simplicity is similar to the gain thermodynamics would have reached by rejecting the atomic hypothesis and being interpreted as a field theory, I would disagree that a "simpler theory" is an advantage. It would be better to care about predictive and explanatory power. But that to prefer an alternative is something which should be allowed in science is nothing I would question.
rubi said:
My point is that Bohmian mechanics predicts the existence of many additional entities and shields them from the observer in such a way that he cannot predict more about them than ordinary quantum theory can. It includes action at a distance but doesn't allow superluminal communication. It is hard to believe that nature has such a rich ontology, yet an observer cannot access any of the additional information or use the action at a distance for superluminal communication. Since there is already a theory that works without any such assumptions and is at the same time simpler to use, I find it natural to rejection the Bohmian theory. I acknowledge that Valentini's theory allows for superluminal communication and it deserves to be tested, but it still seems much more convoluted than ordinary QM for be to jump onto it before experiments disprove ordinary QM.
I do not think dBB ontology is nice. But if we combine the Copenhagen interpretation with the idea that that there exists a unique theory for everything, we cannot really avoid to have a configuration also for the quantum part. We have the access to this part of the structure in the classical part. What we can try to get rid of is the wave function part, which may be epistemological.
rubi said:
I don't consider Reichenbach's principle essential or fundamental. It is just one possible principle that may or may not be true and it doesn't seem like we gain much by accepting it. On the other hand, our best theories are all relativistically covariant and it would be a big problem to explain why all our theories are relativistically covariant when nature really isn't relativistically covariant.
That's a minor problem and already solved in
http://arxiv.org/abs/gr-qc/0205035 at least for the classical part, the EEP is derived there for a non-covariant theory.
rubi said:
I rather accept the violation of a principle that doesn't need to be realized anyway, than overthrowing basically all of modern physics, especially if there is no evidence that anything can be gained by that.
There is IMHO nothing important which has to be overthrown, except some metaphysical prejudices against hidden variables. The ether theory of
http://arxiv.org/abs/gr-qc/0205035 has the EEP and the Einstein equations as a limit, and its most serious differences with GR disappear if one chooses Y<0, which gives only four massless dark matter fields and some arbitrary small cosmological terms as the remaining difference.
The SM should not be overthrown too,
http://arxiv.org/abs/0908.0591 is the only theory I know of which actually predicts the three generations of SM fermions, the SM gauge group, and its action on the fermions, which, I think, is a gain. But, of course, you may find the string theory landscape more attractive.
So, what are the things which have to be overthrown?
rubi said:
You were the one who started being disrespectful.
I have different memories, but let's forget it.
rubi said:
There are perfectly good reasons to reject an ether theory if it doesn't yield any immediate gain, while only making the theory more complicated. I'm sure if you managed to describe some new experimental result with Bohmian mechanics, people would be just as quickly switch to your theory as they rejected Reichenbach's principle.
Sorry, but the gains which can be reached with the ether can be easily seen. The problems of quantization of gravity essentially disappear - we know how to quantize condensed matter theories. The problem to explain why the SM is what it is is solved in an IMHO satisfactory way too, even if the model does not allow to compute the masses. Bohmian mechanics does not have a measurement problem. My ether theories have been published already some years, but are simply ignored. So, no, I don't believe anymore that people would switch to ether theory if it would give some gains. (Not in a world where you need an independent income to do independent research because you can be sure that it will be extremely hard to publish anything and you will never obtain a grant for this.)
And, of course, the question is what has been the immediate gain of the atomic hypothesis? How long has atomic theory been developed before it managed to obtain a new experimental result?