MHB Can You Crack the Trigonometric Integration Challenge?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The discussion centers around a trigonometric integration challenge involving the integral of the form ∫(c cos x + d sin x) / (a cos x + b sin x) dx, where a, b, c, and d are constants constrained by a² + b² = c² + d² = 1. Participants are encouraged to submit their solutions and follow the guidelines for the Problem of the Week. Several members, including greg1313, Ackbach, and kaliprasad, successfully provided correct solutions, while lfdahl received partial credit. The thread highlights the collaborative effort in solving complex mathematical problems. Engaging in such challenges fosters a deeper understanding of trigonometric integration techniques.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Find $$\int_{}^{} \dfrac{c\cos x+d\sin x}{a\cos x+b\sin x}\,dx$$ given $a,\,b,\,c,\,d$ are constants such that $a^2+b^2=c^2+d^2=1$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. greg1313
2. Ackbach
3. kaliprasad

Partial credit goes to lfdahl.

Solution from Ackbach:
We are asked to compute
$$\int\frac{c \cos(x)+d \sin(x)}{a \cos(x)+b \sin(x)} \, dx, \qquad a^2+b^2=c^2+d^2=1.$$
Because $a^2+b^2=c^2+d^2=1$, we may use a slight change of constants. That is, there must exist $\theta$ and $\varphi$ such that
\begin{align*}
a&=\sin(\varphi) \\
b&=\cos(\varphi) \\
c&=\sin(\theta) \\
d&=\cos(\theta).
\end{align*}
The integral becomes
\begin{align*}
\int\frac{c \cos(x)+d \sin(x)}{a \cos(x)+b \sin(x)} \, dx &= \int\frac{\sin(\theta) \cos(x)+\cos(\theta) \sin(x)}{\sin(\varphi) \cos(x)+\cos(\varphi) \sin(x)} \, dx \\
&=\int\frac{\sin(x+\theta)}{\sin(x+\varphi)} \, dx, \qquad y=x+\varphi \\
&=\int\frac{\sin(y+\theta-\varphi)}{\sin(y)} \, dy, \qquad \alpha=\theta-\varphi \\
&=\int\frac{\sin(y+\alpha)}{\sin(y)} \, dy \\
&=\int\frac{\sin(y)\cos(\alpha)+\cos(y) \sin(\alpha)}{\sin(y)} \, dy \\
&=\int [\cos(\alpha)+\sin(\alpha) \cot(y)] \, dy \\
&=y \cos(\alpha)+\sin(\alpha) \ln|\sin(y)|+C \\
&=(x+\varphi) \cos(\theta-\varphi)+\sin(\theta-\varphi)\ln|\sin(x+\varphi)|+C \\
&=(x+\arcsin(a)) (bd+ac)+(bc-ad) \ln|b \sin(x)+a \cos(x)|+C.
\end{align*}
We could absorb the $\arcsin(a) \, (bd+ac)$ into the constant to obtain the slightly simpler expression
$$\boxed{x(bd+ac)+(bc-ad) \ln|b \sin(x)+a \cos(x)|+C.}$$

Check via differentiation:
\begin{align*}
\d{}{x} \left[ x(bd+ac)+(bc-ad) \ln|b \sin(x)+a \cos(x)| \right] &=bd+ac+(bc-ad) \, \frac{-a \sin(x)+b \cos(x)}{a \cos(x)+b \sin(x)} \\
&=\frac{(bd+ac)(a \cos(x)+b\sin(x))+(bc-ad)(-a\sin(x)+b\cos(x))}{a\cos(x)+b\sin(x)} \\
&=\frac{(abd+a^2c+b^2c-abd)\cos(x)+(b^2d+abc-abc+a^2d)\sin(x)}{a\cos(x)+b\sin(x)} \\
&=\frac{c\cos(x)+d\sin(x)}{a\cos(x)+b\sin(x)},
\end{align*}
which is the original integrand, as required. So, as long as we can avoid the denominator being zero, which occurs when
\begin{align*}
a\cos(x)+b\sin(x)&=0 \\
a\cos(x)&=-b\sin(x) \\
-\frac{a}{b}&=\tan(x) \\
x&=-\arctan\left(\frac{a}{b}\right),
\end{align*}
then the antiderivative is given above.
Alternate solution from kaliprasad:
We have $\dfrac{d}{dx}(a\cos\,x+b\sin\,x)=-a\sin\,x+b\cos\,x\cdots(1)$

so let $c\cos\,x + d\sin\,x = A(a\cos\,x+b\sin\,x) + B(-a\sin\,x+b\cos\,x)$

hene comparing coefficients of $\cos\,x$ and $\sin\,x$ on both sides we see

$c= Aa + Bb \cdots(2)$

$d = Ab-aB\cdots(3)$

solving above 2 we get

$A=\dfrac{ca+db}{a^2+b^2} = ca+db$

and $B = \dfrac{bc-ad}{c^2+d^2} = bc-ad$

hence

$c \cos\,x + d\sin\,x= (ac+bd)(a\cos\,x+b\sin\,x) + (bc-ad)(-a\sin\,x+b\cos\,x)$

hence

$\dfrac{c \cos\,x + d\sin\,x}{\cos\,x+b\sin\,x} = (ac+bd) + (bc-ad) \dfrac{-a\sin\,x+b\cos\,x}{a\cos\,x+b\sin\,x}$

so integrating we get the result knowing (1)

= $(ac+bd) x + (bc-ad) ln |a\cos\,x+b\sin\,x| + C$
 
Back
Top