Can You Crack the Trigonometric Integration Challenge?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The discussion centers on solving the integral $$\int \dfrac{c\cos x+d\sin x}{a\cos x+b\sin x}\,dx$$ where constants $a, b, c, d$ satisfy the conditions $a^2+b^2=c^2+d^2=1$. Participants shared their solutions, with members greg1313, Ackbach, and kaliprasad providing correct answers. Ackbach's solution was highlighted, along with an alternate approach from kaliprasad. The problem is part of the Problem of the Week (POTW) series on Math Help Boards.

PREREQUISITES
  • Understanding of trigonometric integrals
  • Familiarity with integration techniques
  • Knowledge of constants and their properties in trigonometric functions
  • Basic calculus concepts, particularly integration
NEXT STEPS
  • Study advanced integration techniques for trigonometric functions
  • Explore the use of substitution in solving integrals
  • Learn about the properties of integrals involving trigonometric identities
  • Review the Problem of the Week (POTW) guidelines on Math Help Boards
USEFUL FOR

Mathematicians, calculus students, and anyone interested in mastering trigonometric integration techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Find $$\int_{}^{} \dfrac{c\cos x+d\sin x}{a\cos x+b\sin x}\,dx$$ given $a,\,b,\,c,\,d$ are constants such that $a^2+b^2=c^2+d^2=1$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. greg1313
2. Ackbach
3. kaliprasad

Partial credit goes to lfdahl.

Solution from Ackbach:
We are asked to compute
$$\int\frac{c \cos(x)+d \sin(x)}{a \cos(x)+b \sin(x)} \, dx, \qquad a^2+b^2=c^2+d^2=1.$$
Because $a^2+b^2=c^2+d^2=1$, we may use a slight change of constants. That is, there must exist $\theta$ and $\varphi$ such that
\begin{align*}
a&=\sin(\varphi) \\
b&=\cos(\varphi) \\
c&=\sin(\theta) \\
d&=\cos(\theta).
\end{align*}
The integral becomes
\begin{align*}
\int\frac{c \cos(x)+d \sin(x)}{a \cos(x)+b \sin(x)} \, dx &= \int\frac{\sin(\theta) \cos(x)+\cos(\theta) \sin(x)}{\sin(\varphi) \cos(x)+\cos(\varphi) \sin(x)} \, dx \\
&=\int\frac{\sin(x+\theta)}{\sin(x+\varphi)} \, dx, \qquad y=x+\varphi \\
&=\int\frac{\sin(y+\theta-\varphi)}{\sin(y)} \, dy, \qquad \alpha=\theta-\varphi \\
&=\int\frac{\sin(y+\alpha)}{\sin(y)} \, dy \\
&=\int\frac{\sin(y)\cos(\alpha)+\cos(y) \sin(\alpha)}{\sin(y)} \, dy \\
&=\int [\cos(\alpha)+\sin(\alpha) \cot(y)] \, dy \\
&=y \cos(\alpha)+\sin(\alpha) \ln|\sin(y)|+C \\
&=(x+\varphi) \cos(\theta-\varphi)+\sin(\theta-\varphi)\ln|\sin(x+\varphi)|+C \\
&=(x+\arcsin(a)) (bd+ac)+(bc-ad) \ln|b \sin(x)+a \cos(x)|+C.
\end{align*}
We could absorb the $\arcsin(a) \, (bd+ac)$ into the constant to obtain the slightly simpler expression
$$\boxed{x(bd+ac)+(bc-ad) \ln|b \sin(x)+a \cos(x)|+C.}$$

Check via differentiation:
\begin{align*}
\d{}{x} \left[ x(bd+ac)+(bc-ad) \ln|b \sin(x)+a \cos(x)| \right] &=bd+ac+(bc-ad) \, \frac{-a \sin(x)+b \cos(x)}{a \cos(x)+b \sin(x)} \\
&=\frac{(bd+ac)(a \cos(x)+b\sin(x))+(bc-ad)(-a\sin(x)+b\cos(x))}{a\cos(x)+b\sin(x)} \\
&=\frac{(abd+a^2c+b^2c-abd)\cos(x)+(b^2d+abc-abc+a^2d)\sin(x)}{a\cos(x)+b\sin(x)} \\
&=\frac{c\cos(x)+d\sin(x)}{a\cos(x)+b\sin(x)},
\end{align*}
which is the original integrand, as required. So, as long as we can avoid the denominator being zero, which occurs when
\begin{align*}
a\cos(x)+b\sin(x)&=0 \\
a\cos(x)&=-b\sin(x) \\
-\frac{a}{b}&=\tan(x) \\
x&=-\arctan\left(\frac{a}{b}\right),
\end{align*}
then the antiderivative is given above.
Alternate solution from kaliprasad:
We have $\dfrac{d}{dx}(a\cos\,x+b\sin\,x)=-a\sin\,x+b\cos\,x\cdots(1)$

so let $c\cos\,x + d\sin\,x = A(a\cos\,x+b\sin\,x) + B(-a\sin\,x+b\cos\,x)$

hene comparing coefficients of $\cos\,x$ and $\sin\,x$ on both sides we see

$c= Aa + Bb \cdots(2)$

$d = Ab-aB\cdots(3)$

solving above 2 we get

$A=\dfrac{ca+db}{a^2+b^2} = ca+db$

and $B = \dfrac{bc-ad}{c^2+d^2} = bc-ad$

hence

$c \cos\,x + d\sin\,x= (ac+bd)(a\cos\,x+b\sin\,x) + (bc-ad)(-a\sin\,x+b\cos\,x)$

hence

$\dfrac{c \cos\,x + d\sin\,x}{\cos\,x+b\sin\,x} = (ac+bd) + (bc-ad) \dfrac{-a\sin\,x+b\cos\,x}{a\cos\,x+b\sin\,x}$

so integrating we get the result knowing (1)

= $(ac+bd) x + (bc-ad) ln |a\cos\,x+b\sin\,x| + C$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
5K