MHB Can you factor the following two polynomials?

  • Thread starter Thread starter DrLiangMath
  • Start date Start date
  • Tags Tags
    Polynomials
DrLiangMath
Messages
21
Reaction score
0
Can you factor the following polynomials over integers?

[math] x^4 + 4[/math]

[math] x^4 + 3 ~x^2~y^2 + 2 ~y^4 + 4 ~x^2 + 5 ~y^2 + 3[/math]

If not, you can get help from the following free math tutoring YouTube channel "Math Tutoring by Dr. Liang"

https://www.youtube.com/channel/UCWvb3TYCbleZjfzz8HEDcQQ
 
Mathematics news on Phys.org
Hint: [math]x^4 +4 = x^4 + 4x^2 - 4x^2 + 4[/math]

-Dan
 
(up)
 
I don't see how that helps. $x^4+ 4$ obviously cannot be factored over the integer, or even over the real numbers.
 
HallsofIvy said:
I don't see how that helps. $x^4+ 4$ obviously cannot be factored over the integer, or even over the real numbers.
As linear factors, yes. But:
[math]x^4 + 4 = x^4 + (4 x^2 - 4 x^2) + 4 = (x^4 + 4 x^2 + 4) - 4 x^2 = (x^2 + 2)^2 - 4 x^2 = (x^2 + 2 + 2 x)(x^2 + 2 - 2 x)[/math]

-Dan
 
Just to mention an alternative approach, $$x^4+4=0$$ has 4 imaginary solutions that form conjugate pairs.
The solutions are $$x=\pm 1\pm i$$

If we then put the conjugate pairs together, we get $$(x-(1+i))(x-(1-i))=x^2-2x+2$$ and $$(x-(-1+i))(x-(-1-i))=x^2+2x+2$$ just like topsquark found.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top