MHB Can you generalize the result for this sum over sum problem?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on simplifying the expression $$\frac{\sum_{k=1}^{99}\sqrt{10+\sqrt{k}}}{\sum_{k=1}^{99}\sqrt{10-\sqrt{k}}$$ and generalizing it to $$\frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$$ for any integer n greater than 1. The solution involves defining two sums, A_n and B_n, and deriving a relationship between them, ultimately showing that A_n equals B_n multiplied by (1 + √2). The final result indicates that the ratio of these sums simplifies to 1 + √2. The discussion concludes with a positive acknowledgment of the solution's clarity and correctness.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $$\frac{\sum\limits_{k=1}^{99}\sqrt{10+\sqrt{k}}}{ \sum\limits_{k=1}^{99}\sqrt{10-\sqrt{k}}}$$
 
Mathematics news on Phys.org
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$
 
jacks said:
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$

Hi jacks,

Thanks for participating and hey, you're a "new blood" to chime in my challenge problems and welcome to the challenge problem forum!(Sun)

Yes, your solution is correct, neatly written and easy to follow, well done!

Here is the way I solve the problem:

I too generalized to compute the value of the expression:

$$ \frac{\sum\limits_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{ \sum\limits_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}}$$

Let:

$$r=\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}$$

$$r^2=n+\sqrt{k}-2\sqrt{n^2-k}+n-\sqrt{k}$$

$$r^2=2\left(n^2-\sqrt{n^2-k} \right)$$

Since $0<r$, we may write:

$$r=\sqrt{2}\sqrt{n^2-\sqrt{n^2-k}}$$

Hence, we may rewrite the given expression as:

$$\frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n+ \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}= \frac{ \sum \limits_{k=1}^{n^2-1} \left(r+ \sqrt{n- \sqrt{k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)+ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+ \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1} \left( \sqrt{2} \sqrt{n- \sqrt{n^2-k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2} \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2}+1$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...