Can you generalize the result for this sum over sum problem?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
SUMMARY

The discussion focuses on simplifying the expression $$\frac{\sum\limits_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum\limits_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}}$$, leading to the conclusion that $$\frac{A_{n}}{B_{n}} = 1+\sqrt{2}$$, where $$A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$$ and $$B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$$ for $$n>1$$. The derivation involves manipulating the difference of square roots and utilizing properties of summation. The solution is confirmed as correct by another participant in the forum.

PREREQUISITES
  • Understanding of summation notation and limits
  • Familiarity with square root properties and algebraic manipulation
  • Basic knowledge of mathematical series and sequences
  • Experience with mathematical proofs and generalization techniques
NEXT STEPS
  • Explore advanced techniques in summation, such as telescoping series
  • Study the properties of square roots in algebraic expressions
  • Learn about mathematical induction for proving generalizations
  • Investigate the applications of series in calculus and analysis
USEFUL FOR

Mathematicians, students studying advanced algebra, and anyone interested in mathematical problem-solving and series simplification techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $$\frac{\sum\limits_{k=1}^{99}\sqrt{10+\sqrt{k}}}{ \sum\limits_{k=1}^{99}\sqrt{10-\sqrt{k}}}$$
 
Mathematics news on Phys.org
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$
 
jacks said:
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$

Hi jacks,

Thanks for participating and hey, you're a "new blood" to chime in my challenge problems and welcome to the challenge problem forum!(Sun)

Yes, your solution is correct, neatly written and easy to follow, well done!

Here is the way I solve the problem:

I too generalized to compute the value of the expression:

$$ \frac{\sum\limits_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{ \sum\limits_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}}$$

Let:

$$r=\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}$$

$$r^2=n+\sqrt{k}-2\sqrt{n^2-k}+n-\sqrt{k}$$

$$r^2=2\left(n^2-\sqrt{n^2-k} \right)$$

Since $0<r$, we may write:

$$r=\sqrt{2}\sqrt{n^2-\sqrt{n^2-k}}$$

Hence, we may rewrite the given expression as:

$$\frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n+ \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}= \frac{ \sum \limits_{k=1}^{n^2-1} \left(r+ \sqrt{n- \sqrt{k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)+ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+ \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1} \left( \sqrt{2} \sqrt{n- \sqrt{n^2-k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2} \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2}+1$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K