MHB Can you generalize the result for this sum over sum problem?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on simplifying the expression $$\frac{\sum_{k=1}^{99}\sqrt{10+\sqrt{k}}}{\sum_{k=1}^{99}\sqrt{10-\sqrt{k}}$$ and generalizing it to $$\frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$$ for any integer n greater than 1. The solution involves defining two sums, A_n and B_n, and deriving a relationship between them, ultimately showing that A_n equals B_n multiplied by (1 + √2). The final result indicates that the ratio of these sums simplifies to 1 + √2. The discussion concludes with a positive acknowledgment of the solution's clarity and correctness.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $$\frac{\sum\limits_{k=1}^{99}\sqrt{10+\sqrt{k}}}{ \sum\limits_{k=1}^{99}\sqrt{10-\sqrt{k}}}$$
 
Mathematics news on Phys.org
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$
 
jacks said:
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$

Hi jacks,

Thanks for participating and hey, you're a "new blood" to chime in my challenge problems and welcome to the challenge problem forum!(Sun)

Yes, your solution is correct, neatly written and easy to follow, well done!

Here is the way I solve the problem:

I too generalized to compute the value of the expression:

$$ \frac{\sum\limits_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{ \sum\limits_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}}$$

Let:

$$r=\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}$$

$$r^2=n+\sqrt{k}-2\sqrt{n^2-k}+n-\sqrt{k}$$

$$r^2=2\left(n^2-\sqrt{n^2-k} \right)$$

Since $0<r$, we may write:

$$r=\sqrt{2}\sqrt{n^2-\sqrt{n^2-k}}$$

Hence, we may rewrite the given expression as:

$$\frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n+ \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}= \frac{ \sum \limits_{k=1}^{n^2-1} \left(r+ \sqrt{n- \sqrt{k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)+ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+ \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1} \left( \sqrt{2} \sqrt{n- \sqrt{n^2-k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2} \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2}+1$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K