Can you help me solve this system of DEs with a tricky auxiliary equation?

  • Thread starter Thread starter EvLer
  • Start date Start date
  • Tags Tags
    Stuck System
AI Thread Summary
The discussion revolves around solving a system of differential equations (DEs) and the challenges faced in factoring the auxiliary equation derived from one of the variables. The auxiliary equation presented is r^3 + 6r^2 + 12r + 12 = 0, which has been found difficult to factor. Another participant provides an alternative equation for x2, leading to roots of -2, -2+i, and -2-i, suggesting that the solutions involve linear combinations of exponential and trigonometric functions. The conversation highlights the complexity of the algebra involved and the frustration of not achieving a straightforward solution. The participants share their methods and results in an effort to clarify the problem and find a resolution.
EvLer
Messages
454
Reaction score
0
I have this system of DEs, but after getting through all the simplifications I can't factor the auxiliary equation:

x1' = -2x1 + x2 + x3
x2' = x1 - x2 + 3x3
x3' = -x2 - 3x3

Then I eliminated all variables except for x2, using Differentiation operator.
my AE from x2 is this:

r3 + 6r2 + 12r + 12 = 0

And I'm stuck!

thank you in advance.
 
Physics news on Phys.org
EvLer said:
r3 + 6r2 + 12r + 12 = 0

For what it's worth, this factors into

<br /> \left( r + a \right) \left(r^2 + \left( 6 - a \right) r + \frac{12}{a} \right) = 0,<br />

with

<br /> a = 2 + 2^{\frac{2}{3}}<br />

Regards,
George
 
I get a different equation for x2.

I get: -(D+2)(D^2 + 4D + 5)x2 = 0
or (D^3 + 6D^2 + 13D + 10)x2 = 0
the aux has roots: -2, -2 +i, -2 - i.

We can check that the eigenvalues of
\left( \begin{array}{ccc} <br /> -2 &amp; 1 &amp; 1 \\<br /> 1 &amp; -1 &amp; 3 \\<br /> 0 &amp; -1 &amp; -3<br /> \end{array} \right)
are -2, -2+i, -2-i

so the solutions should be linear combinations
of exp(-2t), exp(-2t)*sin(t), exp(-2t)*cos(t).
 
How did you get that equation?
I tried eliminating x1 first, after that I have 2 equations:

x2 + (D + 3)x3 = 0
(D + 1)(D + 2)x2 - x2 - x3 - 3(D + 2)x3 = 0

so from here

x2 + (D + 3)x3 = 0
[(D + 1)(D + 2) - 1]x2 - [3(D + 2) + 1]x3 = 0

is that what you had?
because I can't get your answer.
thanks.
 
Last edited:
starting here
x2 + (D + 3)x3 = 0
[(D + 1)(D + 2) - 1]x2 - [3(D + 2) + 1]x3 = 0

therefore
[3(D+2)+1]x2 + (D+3)[3(D+2)+1]x3 = 0
(D+3)[(D + 1)(D + 2) - 1]x2 - (D+3)[3(D + 2) + 1]x3 = 0

add those.

and some mindless algebra gives:
[3(D+2)+1 + (D+3)[(D+1)(D+2) -1]] x2 = 0;
[3D + 6+1 + (D+3)[D^2 + 3D + 1]]x2 = 0
[3D +7 + D^3 + 3D^2 + D + 3D^2 + 9D + 3]x2 = 0
[D^3 + 6D^2 + 13D + 10]x2 = 0
 
Last edited:
argh... Ok, thanks much! I guess I just expected a nice and simple solution...
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top