Can you prove the definite value of $f(x)$?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The function \( f(x) = \frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x} \) is proven to have a constant value of 2, provided that \( \sin x \times \cos x \neq 0 \). If \( \sin x \times \cos x = 0 \), the function becomes undefined. The discussion emphasizes the importance of understanding the behavior of sine and cosine functions at specific intervals to establish the constancy of \( f(x) \).

PREREQUISITES
  • Understanding of trigonometric identities, specifically sine and cosine functions.
  • Knowledge of the properties of periodic functions.
  • Familiarity with limits and continuity in mathematical functions.
  • Basic algebraic manipulation of trigonometric expressions.
NEXT STEPS
  • Study the derivation of trigonometric identities, particularly for \( \sin 3x \) and \( \cos 3x \).
  • Explore the implications of the sine and cosine functions being zero in trigonometric equations.
  • Investigate the concept of function limits and continuity in relation to trigonometric functions.
  • Learn about the graphical representation of periodic functions to visualize the behavior of \( f(x) \).
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking to deepen their understanding of trigonometric functions and their properties.

Albert1
Messages
1,221
Reaction score
0
$f(x)=\dfrac {sin \,3x}{sin\, x}-\dfrac {cos\, 3x}{cos \,x}$

prove the value of $f(x)$ is always definite
 
Physics news on Phys.org
Albert said:
$f(x)=\dfrac {sin \,3x}{sin\, x}-\dfrac {cos\, 3x}{cos \,x}$

prove the value of $f(x)$ is always definite
of course :$sin\,x\,\times cos\,x \neq 0$
if $sin\,x\times \,cos\,x=0$ then $f(x)$ is meaningless
hint :$sin\,3x=?\,\,\,$ $cos\,3x=?$
 
Albert said:
$f(x)=\dfrac {sin \,3x}{sin\, x}-\dfrac {cos\, 3x}{cos \,x}$

prove the value of $f(x)$ is always definite

I do not know what you mean by definiten but if you mean constant then

$\dfrac {sin \,3x}{sin\, x}-\dfrac {cos\, 3x}{cos \,x}$
= $\dfrac {sin \,3x\cos\, x-cos\, 3x\sin\, x}{cos \,x\sin\,x }$
= $\dfrac {sin \,2x}{cos \,x\sin\,x }$
= $\dfrac {2 sin \,2x}{2 cos \,x\sin\,x }$
= $\dfrac {2 sin \,2x}{\sin\,2x }$
= 2
which is constant
 
kaliprasad said:
I do not know what you mean by definiten but if you mean constant then

$\dfrac {sin \,3x}{sin\, x}-\dfrac {cos\, 3x}{cos \,x}$
= $\dfrac {sin \,3x\cos\, x-cos\, 3x\sin\, x}{cos \,x\sin\,x }$
= $\dfrac {sin \,2x}{cos \,x\sin\,x }$
= $\dfrac {2 sin \,2x}{2 cos \,x\sin\,x }$
= $\dfrac {2 sin \,2x}{\sin\,2x }$
= 2
which is constant
yes the definite value (constant) of f(x) is 2
 
Albert said:
$f(x)=\dfrac {sin \,3x}{sin\, x}-\dfrac {cos\, 3x}{cos \,x}$

prove the value of $f(x)$ is always definite

Here's another way to proceed:

We are given:

$$f(x)=\frac{\sin(3x)}{\sin(x)}-\frac{\cos(3x)}{\cos(x)}$$

Combine terms:

$$f(x)=\frac{\sin(3x)\cos(x)-\cos(3x)\sin(x)}{\sin(x)\cos(x)}$$

In the numerator, apply angle-difference identity for sine and in the denominator apply double-angle identity for sine:

$$f(x)=\frac{\sin(3x-x)}{\dfrac{1}{2}\sin(2x)}=2$$
 
another solution:
$\dfrac {sin\,3x}{sin\,x}-\dfrac {cos\,3x}{cos\,x}$

$=\dfrac {3sin\,x-4sin^3x}{sin\,x}-\dfrac {4cos^3\,x -3cos\,x}{cosx}$

$=6-4(sin^2x+cos^2x)=6-4=2$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K