MHB Can you prove this fractional equality?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The discussion centers on proving the fractional equality given in the Problem of the Week (POTW). The equality states that if the ratios of sums involving variables a, b, c, x, y, and z are equal, then a specific relationship between these variables holds. Kaliprasad provided a correct solution to the problem, demonstrating the validity of the equality. Participants are encouraged to review the guidelines for submitting solutions and to engage with the problem. The thread highlights the importance of mathematical proofs in understanding relationships between variables.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove that if $\dfrac{a+b}{3x-y}=\dfrac{b+c}{3y-z}=\dfrac{c+a}{3z-x}$, then $\dfrac{a+b+c}{x+y+z}=\dfrac{ax+by+cz}{x^2+y^2+z^2}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to kaliprasad for his correct solution:

Solution from kaliprasad:

We have

$\dfrac{a+b}{3x-y}= \dfrac{b+c}{3y-z}=\dfrac{c+a}{3z-x}$

Using law of proportionate

if $\dfrac{p}{q} = \dfrac{r}{s} = \dfrac{t}{u}$ then

$\dfrac{p}{q} = \dfrac{r}{s} = \dfrac{t}{u} = \dfrac{p+r+t}{q+s+u}$ we have

$\dfrac{a+b}{3x-y}= \dfrac{b+c}{3y-z}=\dfrac{c+a}{3z-x}= \dfrac{2(a+b+c)}{2(x+y+z)}= \dfrac{a+b+c}{x+y+z}\cdots(1)$ If $\dfrac{p}{q} = \dfrac{r}{s}$

Then $\dfrac{p}{q} = \dfrac{r}{s} = \dfrac{p-r}{q-s}$

We get from

$\dfrac{a+b+c}{x+y+z}=\dfrac{a+b}{3x-y}= \dfrac{a+b+c-(a+b)}{x+y+z-(3x-y)} = \dfrac{c}{z-2x+2y}\cdots(2)$ using law of proportionate

Similarly

$\dfrac{a+b+c}{x+y+z}=\dfrac{b+c}{3y-z}= \dfrac{a+b+c-(b+c)}{x+y+z-(3y-z)} = \dfrac{a}{x-2y+2z}\cdots(3)$

and

$\dfrac{a+b+c}{x+y+z}=\dfrac{c+a}{3z-x}= \dfrac{a+b+c-(c+a)}{x+y+z-(3z-x)} = \dfrac{b}{y-2z+2x}\cdots(4)$

hence from (2) (3) and (4) we get

$\dfrac{a+b+c}{x+y+z}=\dfrac{a}{x-2y+2z}= \dfrac{b}{y-2z+2x} = \dfrac{c}{z-2x+2y}\cdots(5)$Using

$\dfrac{p}{q} = \dfrac{r}{s} = \dfrac{t}{u}= \dfrac{xp+yr+zt}{xq+ys+zu}$

We get

$\dfrac{a}{x-2y+2z}= \dfrac{b}{y-2z+2x} = \dfrac{c}{z-2x+2y}$

$ = \dfrac{ax + by+ cz}{x(x-2y+2z) + y(y-2z+2x) + z(z-2x+2y)}$

= $\dfrac{ax + by+ cz}{x^2+ y^2 + z^2}\cdots(6)$

From (5) and (6) we get

$\dfrac{a+b+c}{x+y+z}=\dfrac{ax+by+cz}{x^2+y^2+z^2}$
 
Back
Top