Can You Prove This Inequality Involving Fractions and Square Roots?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The inequality \(1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)>\dfrac{1}{\sqrt[2014]{2015}}\) has been discussed in detail, focusing on the harmonic series and its properties. The left-hand side simplifies to a form involving the harmonic sum, while the right-hand side is expressed as a root function. The discussion emphasizes the importance of understanding the behavior of these mathematical expressions to validate the inequality effectively.

PREREQUISITES
  • Understanding of harmonic series and their convergence properties.
  • Familiarity with inequalities involving fractions and roots.
  • Basic knowledge of limits and asymptotic analysis.
  • Proficiency in mathematical proof techniques, particularly in inequalities.
NEXT STEPS
  • Study the properties of harmonic series and their approximations.
  • Learn about techniques for proving inequalities in mathematical analysis.
  • Explore the application of the Cauchy-Schwarz inequality in similar contexts.
  • Investigate the behavior of functions involving roots and their limits.
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in mathematical inequalities and proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)>\dfrac{1}{\sqrt[2014]{2015}}$


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered last week's problem.:(

You can view the proposed solution below:

Note that we could rewrite the LHS of the given inequality as

$\begin{align*}1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)&=\dfrac{1}{2014}\left(\overbrace{1+1+1+\cdots+1}^{2014}-\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)\right)\\&=\dfrac{1}{2014}\left(\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)\cdots+\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)\right)\\&=\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\cdots+\dfrac{2013}{2014}+\dfrac{2014}{2015}\right)\end{align*}$

At this point, we can apply the AM-GM inequality to

$\begin{align*}\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\cdots+\dfrac{2013}{2014}+\dfrac{2014}{2015}&\ge 2014\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdots\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\right)^{\frac{1}{2014}}\\& \ge 2014\left(\frac{1}{2015}\right)^{\frac{1}{2014}}\end{align*}$

Therefore

$\begin{align*}1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)&=\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\cdots+\dfrac{2013}{2014}+\dfrac{2014}{2015}\right)\\&\ge \dfrac{1}{2014}\left(2014\left(\frac{1}{2015}\right)^{\frac{1}{2014}}\right)\\&\ge \left(\frac{1}{2015}\right)^{\frac{1}{2014}}\text{Q.E.D.}\end{align*}$
 

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K