MHB Can You Prove This Inequality Involving Fractions and Square Roots?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The inequality to prove is that 1 minus a fraction involving the harmonic series is greater than the reciprocal of the 2014th root of 2015. Participants discuss the components of the inequality, particularly focusing on the behavior of the harmonic series and its approximation. The proposed solution involves analyzing the terms and applying properties of inequalities and limits. There is an emphasis on the mathematical techniques required to handle the fractions and roots effectively. The discussion highlights the complexity of the problem and the need for rigorous proof to validate the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)>\dfrac{1}{\sqrt[2014]{2015}}$


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered last week's problem.:(

You can view the proposed solution below:

Note that we could rewrite the LHS of the given inequality as

$\begin{align*}1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)&=\dfrac{1}{2014}\left(\overbrace{1+1+1+\cdots+1}^{2014}-\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)\right)\\&=\dfrac{1}{2014}\left(\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)\cdots+\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)\right)\\&=\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\cdots+\dfrac{2013}{2014}+\dfrac{2014}{2015}\right)\end{align*}$

At this point, we can apply the AM-GM inequality to

$\begin{align*}\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\cdots+\dfrac{2013}{2014}+\dfrac{2014}{2015}&\ge 2014\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdots\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\right)^{\frac{1}{2014}}\\& \ge 2014\left(\frac{1}{2015}\right)^{\frac{1}{2014}}\end{align*}$

Therefore

$\begin{align*}1-\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{2015}\right)&=\dfrac{1}{2014}\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\cdots+\dfrac{2013}{2014}+\dfrac{2014}{2015}\right)\\&\ge \dfrac{1}{2014}\left(2014\left(\frac{1}{2015}\right)^{\frac{1}{2014}}\right)\\&\ge \left(\frac{1}{2015}\right)^{\frac{1}{2014}}\text{Q.E.D.}\end{align*}$
 
Back
Top